
Journal Pre-proof

Accentron: Foreign accent conversion to arbitrary non-native speakers
using zero-shot learning

Shaojin Ding, Guanlong Zhao, Ricardo Gutierrez-Osuna

PII: S0885-2308(21)00102-9
DOI: https://doi.org/10.1016/j.csl.2021.101302
Reference: YCSLA 101302

To appear in: Computer Speech & Language

Received date : 12 April 2021
Revised date : 19 September 2021
Accepted date : 21 September 2021

Please cite this article as: S. Ding, G. Zhao and R. Gutierrez-Osuna, Accentron: Foreign accent
conversion to arbitrary non-native speakers using zero-shot learning. Computer Speech &
Language (2021), doi: https://doi.org/10.1016/j.csl.2021.101302.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2021 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.csl.2021.101302
https://doi.org/10.1016/j.csl.2021.101302


Revised manuscript (with changes marked) Journal Pre-proof
Accentron: Foreign Accent Conversion to Arbitrary
Non-Native Speakers Using Zero-Shot Learning?

Shaojin Ding∗, Guanlong Zhao1, Ricardo Gutierrez-Osuna

Department of Computer Science and Engineering, Texas A&M University, USA

Abstract

Foreign accent conversion (FAC) aims to create a new voice that has the voice

identity of a given second-language (L2) speaker but with a native (L1) accent.

Previous FAC approaches usually require training a separate model for each

L2 speaker and, more importantly, generally require considerable speech data

from each L2 speaker for training. To address these limitations, we propose

Accentron, an approach that can generate accent-converted speech for arbi-

trary L2 speakers unseen during training. In the proposed approach, we first

train a speaker-independent acoustic model on L1 corpora to extract bottleneck

features that represent the linguistic content of utterances. Then, we develop

a speaker encoder and an accent encoder to generate embedding vectors for

the desired voice identity (L2 speaker’s) and accent (L1 accent), respectively.

Lastly, we use a sequence-to-sequence model to transform bottleneck-features to

Mel-spectrograms, conditioned on the L2 speaker embedding and the L1 accent

embedding. We conducted experiments on the L2-ARCTIC corpus under two

testing conditions: the standard FAC setting where test L2 speakers were seen

during training, and a zero-shot FAC setting where test L2 speakers were unseen

during training. Accentron achieves over 27% relative improvement in accent-

edness ratings compared to two state-of-the-art FAC systems in the standard
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Journal Pre-proof
FAC setting. More importantly, our results show that Accentron generalizes to

the zero-shot FAC setting with no performance loss. Therefore, in practical use

scenarios (e.g., computer-assisted pronunciation training software), Accentron

can effectively avoid the need to adapt or retrain the model, which significantly

reduces computations and the users’ waiting time.

Keywords: Foreign accent conversion,, Speech synthesis, Computer-assisted

pronunciation training

1. Introduction

Foreign accent conversion (FAC) [1] aims to create a new voice that has

the voice identity of a given L2 speaker and the accent of an L1 speaker. In

pronunciation training, FAC can serve as a “golden speaker” for the L2 speaker

to practice with: their own voice, but with a native accent [1, 2, 3, 4]. FAC5

also finds applications in movie dubbing [5], personalized text-to-speech (TTS)

synthesis [6, 7], and improving speech recognition performance [8]. A variety of

techniques have been proposed to perform FAC, including voice morphing [1,

9, 10], frame pairing [11, 12], articulatory synthesis [13, 14], and sequence-to-

sequence (seq2seq) modeling [15, 16]. However, previous FAC approaches have10

two major limitations. First, they operate in a one-to-one fashion, i.e., they

require training a separate model for each pair of L1 and L2 speakers. Second,

they need a considerable amount of speech data (∼1,000 utterances) for each

L2 speaker. Thus, when using these conventional FAC methods in real-world

applications such as pronunciation training, L2 learners need to record a large15

number of utterances and then wait for a dedicated model to be trained, which

can be tedious and demotivating.

To address this issue, we propose Accentron, a zero-shot learning [17] ap-

proach to FAC that can synthesize speech for arbitrary L2 speakers who were

unseen during training. Accentron consists of four independent models: (1) a20

speaker-independent acoustic model that captures the linguistic content of an

L1 utterance as a sequence of bottleneck feature vectors, (2) a speaker encoder
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that captures the voice identity of the L2 speaker, denoted as a speaker embed-

ding, (3) an accent encoder that captures the desired L1 accent, denoted as an

accent embedding, and (4) a seq2seq model that generates a Mel-spectrogram25

from the sequence of bottleneck features, conditioned on the desired speaker and

accent embeddings. These components can be trained independently, at which

point the system can generate accent conversions to arbitrary L2 speakers given

a few seconds of audio (i.e., enough speech to compute a speaker embedding),

without the need to have any model re-training or adaptation process.30

To our knowledge, ours is the first work to apply zero-shot learning for the

task of FAC. Though zero-shot learning has been used for voice conversion [18,

19, 20, 21] and voice cloning [22, 23], previous studies [18, 19, 20, 21, 22, 23]

have focused exclusively on manipulating voice identity, ignoring the speaker’s

accent, which holds important cues to speaker recognition [24] and speech per-35

ception [25, 26, 27, 28]. Incorporating accent into the conversion process requires

changes to the conventional encoder-decoder structure of sequence-to-sequence

(seq2seq) models for voice conversion. Our encoder takes a sequence of L1 bot-

tleneck feature vectors as the input, and produces a hidden representation se-

quence. In a conventional voice conversion system [18, 19, 29, 30, 31, 32, 33, 34],40

this hidden representation sequence is then concatenated with the speaker em-

bedding of the target speaker. In our case, however, the system also concate-

nates the accent embedding, which is treated as an additional independent and

controllable factor during synthesis. The combined bottleneck/speaker/accent

embedding is consumed by a decoder coupled with a location-sensitive attention45

mechanism [35]. During each decoding step, the decoder autoregressively pre-

dicts a Mel-spectrogram frame based on the output from the previous decoding

step and a context vector produced by the attention mechanism. Finally, the

output Mel-spectrogram is converted back into a waveform through either the

Griffin-Lim algorithm [36] or a separately trained vocoder (e.g., WaveNet [37],50

WaveRNN [38]).

We thoroughly evaluated Accentron on the L2-ARCTIC corpus [39]. First,

we visualized the speaker and accent embedding distributions for the accent-
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converted speech and natural speech, and the results show that Accentron syn-

theses can successfully capture the L2 voice identity along with an L1 accent.55

Second, we conducted a series of listening tests under two different settings: (1) a

standard FAC setting, where the test L2 speakers were available during training,

and (2) a zero-shot FAC setting, which assumes that the test L2 speakers were

not available during training. Accentron achieves 27% relative improvement in

accentedness while retaining the acoustic quality and voice identity, compared60

to two state-of-the-art FAC systems in standard FAC settings. In addition, Ac-

centron showed no performance degradation when tested under zero-shot FAC

setting.

The manuscript is organized as follows. Section 2 reviews prior approaches

to foreign accent conversion, many-to-many voice conversion, and sequence-to-65

sequence models. Section 3 describes the architecture of Accentron in detail.

Section 4 provides the experimental setup, including the corpora and imple-

mentation details. Section 5 presents the objective and subjective evaluations

of Accentron and analyzes the results. We discuss the implications of the re-

sults in Section 6. Lastly, we conclude the findings of this work and point out70

potential future directions in Section 7.

2. Related work

2.1. Foreign accent conversion

The problem of foreign accent conversion was first formulated by Felps et al.

[1] as the means to provide implicit feedback in computer assisted pronuncia-75

tion training. Early approaches [14, 40, 41, 42] involved building an articulatory

synthesizer for the L2 speaker. The articulatory synthesizer was trained to map

the L2 speaker’s articulatory trajectories (e.g., tongue and lip movements) into

his or her acoustics features (e.g., Mel Cepstra) using GMMs [14], unit-selection

models [40], and DNNs [41]. Once the synthesizer was built, it could be driven80

with articulatory trajectories from an L1 speaker to synthesize FAC speech.

However, these approaches were impractical for pronunciation training since col-

4

Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
lecting articulatory data is expensive and requires specialized equipment2. As

a result, later work on FAC has focused on acoustic methods, since they only

require recording speech with a microphone. Previous acoustic methods can be85

grouped into two categories: frame-pairing methods [11, 12] and seq2seq meth-

ods [15, 16]. As the name suggests, frame-pairing methods builds a lookup table

where L1 and L2 speech frames are paired based on their similarity, and then use

a statistical model (e.g., a GMM) to convert from L1 frames to their correspond-

ing L2 frames in the lookup table. Aryal and Gutierrez-Osuna [11] first proposed90

a technique to pair L1-L2 frames based on their acoustic similarity (in MFCC

space), after applying vocal tract length normalization to reduce global differ-

ences between the L1 and L2 spectra. Following this, Zhao et al. [12] argued

that the L1 and L2 frames should be paired based on their linguistic content,

and consequently, they used Phonetic-PosteriorGram (PPG) similarity instead95

of MFCC similarity. More recently, methods based on seq2seq models have

been shown to significantly improve synthesis quality. In a previous study [15],

we proposed a seq2seq PPG-to-Mel synthesizer for FAC. During training, the

system learns a seq2seq model to convert PPGs to Mel-spectra extracted from

utterances of an L2 speaker. During inference, the model is driven by PPGs100

extracted from a reference L1 utterance, which then produces FAC synthesis.

In related work, Liu et al. [16] proposed a novel recognizer-synthesizer frame-

work to remove the need for a reference L1 utterance. Their system trained a

speaker recognizer, a multi-speaker text-to-speech (TTS) model, and an accent-

sensitive automatic speech recognition (ASR) system. During inference, they105

feed L2 Mel-spectra to the ASR system with the corresponding accent, and then

feed the output of the ASR system and the L2 speaker embedding to the multi-

speaker TTS model to generate accent-converted utterances. These seq2seq

model based FAC approaches can convert segmental and prosody features si-

multaneously, producing syntheses with higher speech naturalness and acoustic110

2Articulatory measurements can be performed via electromagnetic articulography [40],

ultrasound imaging [43], palatography [44], and more recently real-time MRI [45].
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quality.

2.2. Many-to-many voice conversion

Foreign accent conversion is related to the more general problem of voice

conversion (VC) [46, 47], which aims to synthesize a voice that has the linguis-

tic content of an utterance from a source speaker and the voice identity of a115

target speaker. Traditional VC approaches use GMMs [48, 49], sparse repre-

sentations [50, 51], and DNNs [52, 53, 54, 55, 56, 57, 21, 58] to transform the

spectra from a source speaker to that of the target speaker. These methods

require training a separate model for each pair of source-target speakers. More

recently, several studies have proposed many-to-many VC approaches based on120

Variational Autoencoders (VAE) [19, 29, 30, 31, 20, 59] and the PPG-to-speech

synthesizer [18, 32, 33, 60, 61]. Hsu et al. [19, 62] first proposed to use a VAE for

many-to-many VC. During training, the encoder learns a speaker-independent

latent embedding from input speech signals, and the decoder reconstructs the

input speech signals given the latent embedding and the corresponding speaker125

embedding. During inference, the speaker embedding is replaced with that of

a target speaker to produce a VC synthesis. A number of subsequent studies

have been conducted to improve performance through various techniques, such

as auxiliary classifiers [20], WaveNet vocoder adaption [59], and discrete latent

space [29, 63]. Other studies [18, 32, 33] have used a PPG-to-speech synthe-130

sizer approach to perform many-to-many VC. The PPG-to-speech synthesizer

is a neural network that takes PPGs as an input, and predict spectra condi-

tioned on the speaker embedding of the target speaker. Early many-to-many

VC models used one-hot vectors as the speaker embedding due to its simplic-

ity, but recent studies [30, 18, 32, 33] have used learned speaker embeddings135

(e.g., i-vector [64], d-vector [65]) to generalize to unseen speakers, which make

it possible to perform VC in a zero-shot fashion.

2.3. Seq2seq models

The seq2seq model was originally proposed by Sutskever et al. [66] for

machine translation. The seq2seq model usually has an encoder-decoder archi-140
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tecture. The encoder learns a hidden representation sequence from an input se-

quence, and the decoder learns to autoregressively generate the output sequence

given the hidden representation. To capture contextual information and handle

length mismatches between the input and output sequences, an attention mech-

anism [67] is added between the encoder and the decoder. In recent years, there145

has been growing interest in applying seq2seq model to speech synthesis. Wang

et al. [68] first proposed a seq2seq based TTS synthesizer (Tacotron), which sig-

nificantly improved the acoustic quality of the syntheses over previous methods.

Following this, Shen et al. [69] proposed Tacotron2, which further improved the

acoustic quality of Tacotron by using a novel model architecture and a WaveNet150

vocoder. Jia et al. [22] extended Tacotron2 to voice cloning by conditioning a

speaker embedding on the decoder. Besides, Biadsy et al. [8] and Jia et al. [70]

also explored the use of seq2seq model in end-to-end speech-to-speech transfor-

mation, which avoids the need of multi-stage recognizer-synthesizer framework

in related tasks, such as hearing-impaired speech synthesis and speech-to-speech155

translation. Seq2seq model has also been applied to voice conversion [56, 60, 61]

and foreign accent conversion [15, 16], which significantly improved the perfor-

mance on these tasks compared to conventional approaches.

3. Methods

Accentron consists of four modules: (1) a speaker-independent acoustic160

model that generates a linguistic representation of an utterance, (2) a speaker

encoder that captures the voice identity of the desired speaker, (3) an accent

encoder that captures the desired accent, and (4) a seq2seq model that con-

sumes the previous three representations to synthesize Mel-spectrogram for an

arbitrary L2 speaker.165

The workflow for training Accentron is shown in Figure 1(a). The acoustic

model, speaker encoder, and accent encoder are trained separately, and then

are used as feature extractors for the seq2seq model. The seq2seq model is

trained on a parallel corpus with multiple L1 and L2 speakers, capturing the
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Figure 1: (a): Overall training workflow of Accentron. (b): Overall inference workflow of Ac-

centron. Source: a selected reference L1 speaker, Target: any L1/L2 speaker, BNF: bottleneck

feature, L1: native, L2: non-native. Each of the modules is trained independently.

voice characteristics of different speakers and accents. In what follows, we define170

a “source” speaker to be a selected reference L1 speaker, and a “target” speaker

to be any L1/L2 speaker. To train the seq2seq model, we pair the source speaker

with each target speaker. Then, for each pair of speakers, we feed source utter-

ances to the speaker-independent acoustic model to extract bottleneck features

(BNFs), which we assume capture only the linguistic content. Next, we feed175

an utterance from the target speaker to the speaker encoder and the accent

encoder, which extract their speaker embedding and accent embedding, respec-

tively. Finally, we train the seq2seq model to convert the source BNFs to the

target Mel-spectrogram, conditioning on the target speaker’s speaker and accent

embeddings.180

The workflow during inference is illustrated in Figure 1(b). Accentron re-

quires a source utterance from an L1 speaker and an utterance from the L2

speaker. First, we extract BNFs and accent embedding from the L1 utterance,

which encode the desired linguistic content and native accent, and a speaker em-

bedding from the L2 utterance, which encodes the desired voice identity of the185

L2 speaker. Then, we pass the L1 BNFs, L1 accent embedding, and L2 speaker
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embedding to the seq2seq model, which generates the accent-converted Mel-

spectrogram. Finally, the Mel-spectrogram is converted back to a waveform, in

our case using a separately trained WaveRNN [38], though other vocoders or

the Griffin-Lim algorithm[36] can also be used.190

3.1. Speaker-independent acoustic model

To capture the linguistic content of an utterance, we use the output of the

last hidden layer of a speaker-independent acoustic model (AM) as BNFs, rather

than the output of the final layer of the AM, which represent the PPGs (i.e.,

the probabilities of each senone/tri-phone). BNFs contain similar linguistic195

information as PPGs but have much lower dimensionality (e.g., Senone-PPG:

6,024 dimensions; BNF: 256 dimensions), which avoids the need to perform

dimensionality reduction in the seq2seq model.

Our AM is based on a Factorized Time Delayed Neural Network (TDNN-

F) [71, 72], a feed-forward neural network acting as a sequential classifier. Given200

an input acoustic feature vector (i.e., 40-dimensional MFCCs), the TDNN-F

produces the probabilities of the vector belonging to each senone/triphone (6,024

senones). The TDNN-F takes time-delayed input frames as side inputs to its

hidden layers to model long-term temporal dependencies, concatenated with

a 100-dimensional i-vector [64] of the corresponding speaker3. Additionally,205

the TDNN-F uses factorized layers with semi-orthogonal constraints as hidden

layers and dilated connections between hidden layers, which are more efficient

during training and inference than recurrent layers due to their feed-forward

nature [71]. The TDNN-F model is composed of five hidden layers. Each of

the first four hidden layers has 1,280 neurons, followed by ReLU activation210

and batch normalization [73], whereas the last hidden layer has 256 neurons,

corresponding to the dimensionality of the BNFs. We train the model through

a supervised 6,024-way senone classification task. To promote that the AM

3As noted by Peddinti et al. [72], this allows the model to capture both speaker and

environment specific information, which is useful for neural network adaption.
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Figure 2: Speaker/accent encoder model architecture. The model is based on ResNet-34 [75].

Each convolution block is illustrated as the kernel size and channel numbers. “/2” means the

layer divides the spatial resolution by 2.

produces speaker-independent BNFs, we train the model on speech data from

several thousands of speakers (Librispeech corpus [74], 2,484 native English215

speakers; see Section 4.1).

3.2. Speaker and accent encoders

We use two independent encoders to compute the desired voice identity and

accent. The speaker encoder is built as a speaker recognition model, which is

trained to determine the identity of a speaker from an input utterance, whereas220

the accent encoder is based on an accent recognition model, which is trained

to recognize accent/dialect patterns (e.g., pronunciation and prosody). For this

work, we use a convolutional neural network (CNN) based on ResNet-34 [75] for

both the speaker encoder and the accent encoder, following a previous speaker-

recognition study [76]. We use the same CNN architecture for both models, so225

here we provide a detailed workflow only for the speaker encoder; the training

and inference workflows of the accent encoder can be derived similarly.

The architecture of the speaker encoder is shown in Figure 2. The model

takes 300×257 in time×frequency magnitude spectrogram segments as inputs.

The inputs are first fed to a convolution layer containing 64 7×7 kernels with230

2×2 stride, followed by a 2×2 max-pooling layer. These layers decrease the

spatial resolution of the feature maps, reducing model complexity and improv-

ing training speed. On top of them, there are 16 convolution residual blocks,
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which extract more abstract features. Each convolution block consists of two

convolution layers with 3×3 kernels. The first convolution layer in each block235

has 2×2 stride to further decrease the spatial resolution of the feature maps.

More importantly, each block has a skip connection as an alternative path to

avoid gradient vanishing in a very deep model. The 16 convolution blocks have

different numbers of kernels, as highlighted in different colors in Figure 2 (Pur-

ple: 64 kernels; Green: 128 kernels; Orange: 256 kernels; Blue: 512 kernels).240

Next, there is an average pooling layer that produces a 512-dimensional vector,

followed by a 256-dimensional fully-connected layer. All the layers are followed

by ReLU activations and batch-normalization [73].

The model is trained through a supervised speaker-classification task. Dur-

ing training, a classifier on top of the 256-dimensional fully-connected layer pro-245

duces the probabilities that the segment belongs to each speaker. The network

is then optimized by minimizing the cross-entropy loss between the prediction

and the target speaker label. During inference, we discard the final classifier

layer and directly use the 256-dimensional bottleneck feature as the segment-

wise speaker embedding. To obtain utterance-level speaker embeddings for a250

speaker that does not appear during training, we divide each test utterance into

300-frame segments with a 150-frame overlap using a sliding window, and then

we compute the average of these segment-wise embeddings as the utterance-level

speaker embedding (i.e., d-vectors [65]).

3.3. Seq2seq foreign accent conversion model255

Our seq2seq model is inspired by the text-to-speech Tacotron2 model [69].

As shown in Figure 3, the seq2seq model has an encoder-decoder architecture.

During training, inputs to the network consist of a triplet: (1) a sequence of

BNFs from the source (L1) speaker, x ∈ RTi×DBNF , (2) a speaker embedding of

the target (L1 or L2) speaker s ∈ RDspeaker extracted from the speaker encoder,260

and (3) the accent embedding of the target speaker a ∈ RDaccent extracted from

the accent encoder. Ti is the length of the sequence x. DBNF is the dimen-

sionality of the BNFs (e.g., 256 in this work). Dspeaker and Daccent are the
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Figure 3: The seq2seq model in Accentron.

dimensionalities of the speaker embedding s and accent embedding a, respec-

tively (both of them are 256 in this work). The ground-truth target of the265

model is a sequence of Mel-spectrogram frames y ∈ RTo×DMel , where To is the

length of the sequence and DMel is the number of Mel-filterbanks (e.g., 80 in

this work). First, the encoder accepts a BNF sequence x and produces a hidden

representation h:

h = Encoder(x) (1)

Then, to condition the decoder on the voice identity and the accent of the target270

speaker, we concatenate the target speaker’s speaker embedding and accent

embedding to the hidden representation:

hconcat = [h, s,a] (2)

Finally, the decoder autoregressively predicts the Mel-spectrogram of the target

speech using the attention context computed based on the concatenated hidden

12
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Table 1: Hyperparameters of the seq2seq foreign accent conversion model.

Block Component Parameters

Inputs

BNF 256-dimensional

Speaker d-vector 256-dimensional

Accent d-vector 256-dimensional

Encoder
3 × Conv layers

512 5×1 kernel with 1×1 stride;

ReLU; batch norm

2 × p-Bi-LSTM 256 cells per direction;

Attention
Location-sensitive 128-dim attention context;

attention 32 31×1 attention conv kernels

Decoder

PreNet
2 × Fully-connected layer ;

256 neurons; ReLU

2 × LSTM 1024 cells

Linear (Mel)
1 × Fully-connect layer;

80 units; no activation

Linear (stop token)
1 × Fully-connect layer;

1 unit; no activation

PostNet

5 × Conv layers;

512 5×1 kernel with 1×1 stride;

tanh; batch norm

Outputs
Mel-spectrogram 80-dimensional

Stop token 2-dimensional

representation:275

ŷt = Decoder(ŷt−1,hconcat) (3)

where ŷt is the t-th frame of the predicted Mel-spectrogram.

During inference, the inputs to the network are also a triplet: (1) a sequence

of BNFs from an L1 speaker, x, (2) a speaker embedding of an L2 speaker, sL2,

and (3) an accent embedding of an L1 speaker, aL1. The network produces a

hidden representation h, concatenates it with sL2 and aL1, and feeds it to the280

decoder to produce the predicted FAC Mel-spectrogram. We describe each com-

ponent in the following subsections. The hyper-parameters of each component

are summarized in Table 1.
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3.3.1. Encoder

The encoder converts a BNF sequence to a hidden representation sequence.285

The original text-to-speech Tacotron2 encoder contains three 1-dimensional con-

volution layers and one Bidirectional Long Short-Term Memory (Bi-LSTM)

layer. However, in our case, the inputs of the seq2seq model are BNF se-

quences instead of text embeddings, which are usually significantly longer. To

capture the high-level phonetic and contextual information in an input BNF290

sequence, we replace the LSTM layer in the encoder with two pyramidal Bidi-

rectional LSTM (p-Bi-LSTM) layers [77]. Each p-Bi-LSTM reduces the time

resolution by a factor of two, and therefore our encoder produces four times

shorter hidden representation sequences compared with the input sequences. A

convolution layer has 512 kernels with 5×1 shape in time×frequency and 1×1295

stride, followed by ReLU activation and batch normalization. Each convolution

kernel spans five BNF frames, which models the local context information. A

p-Bi-LSTM layer has 256 cells in each direction, followed by ReLU activation

and batch normalization, producing a 512-dimensional hidden representation

sequence.300

3.3.2. Decoder

The decoder is an autoregressive recurrent neural network coupled with a

local sensitive attention mechanism [35]. The decoder accepts the concatenated

hidden representation sequences as inputs, and produces an 80-dimensional Mel-

spectrogram as the prediction of the L2 speech. During each decoding step, the305

predicted Mel-spectrogram frame from the previous step is first passed into a

pre-net that has two 256-dimensional fully-connected layers with ReLU activa-

tions:

qt = PreNet(ŷt−1) (4)

The pre-net acts as an information bottleneck, which is essential for learning

attentions [69]. Next, the location-sensitive attention mechanism computes a310

128-dimensional attention context vector ct based on the pre-net output, the
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concatenated hidden representations, and the attention context from the previ-

ous step:

ct = Attention(qt,hconcat, c
t−1) (5)

Following this, the pre-net output is concatenated with the context vector and

fed to two unidirectional LSTM layers with 256 cells. Then, the output of the315

second LSTM layer is concatenated again with the context vector ct and passed

through an 80-unit linear layer to make a prediction of the 80-dimensional L2

Mel-spectrogram frame:

ŷt
pre = Linear(LSTM(qt, ct), ct) (6)

More importantly, the network also predicts if the generating process should stop

at the current decoding step at the same time, i.e., a stop token t̂ ∈ RTo . Finally,320

to incorporate the spectral residual and improve synthesis quality, the predicted

Mel-spectrogram is passed through a post-net consisting of five convolution

layers to predict the residual. Each of these layers has 512 kernels with 5×1

shape and 1×1 stride, followed by tanh activation and batch normalization. The

residual is added back to the original prediction to form the final prediction:325

ŷt = ŷt
pre + PostNet(ŷt

pre) (7)

The model is optimized by minimizing the Euclidean distance between the

target Mel-spectrogram and the prediction before/after the post-net. We also

jointly minimize an extra cross-entropy loss to learn the stop token for model

inference.

L = ||ŷt
pre − y||22 + ||ŷt − y||22 + λCrossEntropy(̂t, t) (8)

where || · ||22 is the Euclidean distance; t̂ is the sequence of predicted stop tokens,330

and t is the sequence of target stop tokens; λ is the weight controlling the

relative importance of the cross-entropy loss. Additionally, we use the teacher-

forcing procedure during training by feeding in the correct output instead of
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the predicted output on the decoder side, which has been shown to improve the

efficiency of the model training [78].335

4. Experimental setup

4.1. Acoustic model

We trained the TDNN-F acoustic model using the Librispeech corpus [74],

which consists of 960 hours of 16 kHz audiobook speech data produced by 2,484

native English speakers, the majority being American English. The training340

set consists of two “clean” subsets and a “noisy” subset4. We used both sets

in training to ensure that the BNF was speaker-independent. In addition, we

used a subset (200 hours) of the training set to train the i-vector extractor. We

implemented the training following the official “tdnn 1d” recipe of the TDNN-F

model in Kaldi5. The trained model achieves 3.76% word error rate (WER) on345

Librispeech’s test-clean subset and 8.92% WER on the test-other subset.

4.2. Speaker encoder

We trained the speaker encoder using the VoxCeleb1 corpus [79], which con-

tains 153,516 utterances of 16 kHz speech produced by 1,251 speakers. Specifi-

cally, we used the training set from the official identification split, which is com-350

prised of 138,316 utterances (∼300 hours) from these speakers. We extracted

257-dimensional magnitude spectrograms with a 25ms window and 10ms shift.

We trained the model on a single NVIDIA Tesla V100 GPU with a batch size

of 128. We used Adam Optimizer with an initial learning rate of 10−2, which

was annealed down to zero following a cosine schedule [80]. The trained model355

achieves 81.34% Top-1 accuracy and 94.49% Top-5 accuracy on the official Vox-

Celeb1 identification testing set.

4We use the term “noisy” subset to refer to the test-other test subset in the LibriSpeech

corpus. LibriSpeech has two test subsets: test-clean and test-other. The recordings in test-

other subset have significantly higher background noise level than the test-clean subset.
5https://github.com/kaldi-asr/kaldi/blob/master/egs/librispeech/s5/local/

chain/tuning/run_tdnn_1d.sh
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4.3. Accent encoder

We trained the accent encoder using the Speech Accent Archive dataset [81],

which consists of recordings of the “Please call Stella” paragraph [81] produced360

by speakers in 386 native and non-native English accents. For most of the

accents, however, the number of speakers is limited, which may degrade the

performance of the accent encoder. To address this issue, we selected a subset

of accents where each accent has at least 30 speakers. The resulting subset

has 18 accents6, with an average of 107 speakers in each accent. The total365

length of the selected subset is around 16 hours. We randomly selected 90%

utterances from each accent as the training set and used the remaining 10%

utterances as the testing set. The audio waveforms in the original dataset have

8 kHz sampling rate. To match it with other modules, we resample them to 16

kHz. Other configurations were the same as that for speaker recognition. Our370

trained model achieves 79.36% Top-1 accuracy and 95.42% Top-5 accuracy on

the testing set.

4.4. Seq2seq foreign accent conversion model

To evaluate the proposed approach, we conducted experiments with the

ARCTIC [82] and L2-ARCTIC corpora [39]. We used four native English speak-375

ers from ARCTIC (BDL, RMS, SLT, CLB) and all 24 non-native English speak-

ers from L2-ARCTIC. For each speaker, we divided their utterances into three

subsets: a training set of 1,032 utterances (∼1 hour of speech), a validation set

of 50 utterances, and a testing set of 50 utterances. During training, we set

BDL as the source speaker and paired it with all 28 speakers, including himself.380

During inference, we used both BDL (male) and CLB (female; used as an un-

seen L1 speaker for the zero-shot FAC setting) as the native reference speakers,

and we performed FAC on four L2 speakers whose first languages were different:

6These 18 accents were Arabic, Cantonese, Dutch, English, Farsi, French, German, Hindi,

Italian, Japanese, Korean, Mandarin, Polish, Portuguese, Russian, Spanish, Turkish, and

Vietnamese.
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NJS (Spanish, female), TXHC (Mandarin, male), YKWK (Korean, male), and

ZHAA (Arabic, female).385

The original L2-ARCTIC audio waveforms have a 44.1 kHz sampling rate, so

we resampled them to 16 kHz to match the ARCTIC recordings. We extracted

80-dimensional Mel-spectrogram with a 25ms window and 10ms shift. Following

the same frame shift, we extracted BNFs for each utterance using the acoustic

model (Section 3.1). In addition, we extracted utterance-level speaker and390

accent d-vectors from the speaker encoder and accent encoder, respectively. We

implemented the model using TensorFlow [83] and trained it on a single NVIDIA

Tesla V100 GPU. The hyperparameter λ (eq. 8) in the loss function was set to

0.005 empirically. We set the batch size to 48, and we used an Adam Optimizer

with an initial learning rate of 10−3, which was then annealed down to 10−5
395

following exponential scheduling. The model converged after 200,000 steps, and

the entire training time was around 100 hours.7 During model inference, we

used a separately trained speaker-independent WaveRNN vocoder to invert the

Mel-spectrogram back to the time-domain waveform. We trained the WaveRNN

model on the Librispeech dataset.400

5. Results

We have validated Accentron through a series of objective and subjective

evaluations. For the objective evaluation, we used t-distributed stochastic neigh-

bor embedding (t-SNE) [84] to analyze the distribution of speaker embeddings

and accent embeddings for the original speech and the accent-converted speech.405

This allowed us to examine whether the two encoder networks can decouple

speaker identity and accent. For the first of two sets of subjective evaluations,

we tested the system when the test L1 and L2 speakers were seen during train-

ing (standard FAC setting) and compared it against two state-of-the-art FAC

systems [15, 16]. We also tested whether our system could be used in the reverse410

7Audio samples from this work can be found at https://shaojinding.github.io/samples/

accentron/. We intend to open-source our code after this work has been peer-reviewed.
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direction, i.e., to impart a non-native accent to a native speaker’s voice. In the

second set of subjective evaluation, we explored the effectiveness of Accentron

when the test L1 and L2 speakers were unseen during training (zero-shot FAC

setting). Further, we characterized the performance of Accentron as a function

of the number of available L2 test utterances during inference (i.e., which are415

used to extract the L2 speaker’s voice identity footprint), and we compared it

against a system that uses these utterances to fine-tune a pre-trained FAC sys-

tem to understand the tradeoff between using L2 test utterances to compute a

speaker embedding (zero-shot learning) and using them to refine a pre-trained

model (fine-tuning).420

5.1. Objective evaluation: speaker and accent embedding spaces

We used t-SNE [84] to visualize the speaker and accent embedding spaces8,

which helped provide a qualitative and intuitive explanation of how our proposed

system operates. First, we visualized the speaker and accent embeddings of 20

FAC utterances for TXHC, a male Mandarin speaker. We used the system425

in the zero-shot condition when both L1 and L2 speakers were unseen (see

Section 5.3.1) to generate the syntheses, since it acts as a performance lower-

bound for all our systems, and it can also provide insights for zero-shot FAC.

We also plotted the embeddings of natural speech from ten L1 and L2 speakers

as references (20 utterances for each speaker). Results are shown in Figure 4,430

where we use colors and shapes to represent speaker and accent, respectively

(e.g., orange denotes speaker BDL, and diamond denotes L1 accent). As shown,

the speaker embeddings of utterances from the same speaker form a cluster, and

the boundary between different clusters are clear. Similarly, accent embeddings

from speakers with the same accent form a cluster. These two results indicate435

that the speaker and accent encoders are operating as expected. In terms of

8The axes in a t-SNE plot have no actual meaning. t-SNE projects high dimensional

vectors into a lower dimensional plane (e.g., 2-D), such that similar points in the projection

are also similar in the original space, and vice versa.
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Figure 4: Speaker and accent embedding visualization of FAC syntheses for TXHC using

t-SNE. (a): speaker embedding; (b): accent embedding. Colors and shapes represent speaker

and accent, respectively. Speakers in the legend are annotated with gender and accent. L1:

native accent; SP: Spanish accent; CN: Mandarin accent; KR: Korean accent; AB: Arabic

accent.

the FAC utterances, their speaker embeddings are distributed in the cluster of

TXHC, which indicate that Accentron can generate speech that matches the

voice identity of the target speaker, and the accent embeddings lie in a cluster

of L1 speakers (BDL and CLB), which also indicate the Accentron can generate440

the desired accent. Together, these visualizations indicate that Accentron can

successfully generate speech with the same voice identity as TXHC but with a

native accent.

We also conducted t-SNE visualizations on a “reverse” FAC task [12, 85],

where the goal was to synthesize speech with the voice identity of a given L1445

speaker but with an L2 accent. This is a straightforward process in Accentron,

since we only need to change the inputs of the seq2seq model to use an L2

accent embedding and an L1 speaker embedding during inference. For these

visualizations, we synthesized a voice that had the voice identity of CLB but

with an L2 (Mandarin) accent. As shown in Figure 5, the speaker embeddings of450

the reverse FAC syntheses lie in the same cluster as CLB utterances, whereas the
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Figure 5: Speaker and accent embedding visualization of reverse FAC syntheses (CLB with a

Mandarin accent) using t-SNE. (a): speaker embedding; (b): accent embedding. Colors and

shapes represent speaker and accent, respectively. Speakers in the legend are annotated with

gender and accent. L1: native accent; SP: Spanish accent; CN: Mandarin accent; KR: Korean

accent; AB: Arabic accent.

accent embeddings lie in the same cluster as the two Mandarin speakers (TXHC

and LXC), indicating that the reverse FAC syntheses have a voice identity of

CLB and a Mandarin accent.

Another interesting question that we would like to investigate here is whether455

the speaker embedding also carries accent cues, as these two aspects are closely

related in the recognition of speakers [25, 26, 69, 28]. If the speaker embed-

ding is entangled with accent information, then there is the risk that Accentron

would generate speech with an incorrect accent that is introduced by speaker

embeddings. To examine this potential issue, we generated t-SNE visualizations460

of speaker embeddings for natural utterances from 16 speakers with 4 different

accents in L2-ARCTIC corpus (See Figure 6 for details of the speakers and ac-

cents). Results in Figure 6 show no adjacency patterns among speakers sharing

the same accent. Instead, t-SNE shows a distinct separation among speakers

based on gender. These results suggest that speaker embedding mainly encodes465

information such as voice quality/timbre and pitch, and no evidence of potential
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Figure 6: t-SNE visualization of the speaker embeddings from 16 speakers with 4 accents.

Colors and shapes represent speaker and accent, respectively. . Speakers in the legend are

annotated with gender and accent. L1: native accent; SP: Spanish accent; CN: Mandarin

accent; KR: Korean accent; AB: Arabic accent.

entanglement between speaker and accent cues.

5.2. Subjective evaluations under standard FAC setting

We also evaluated Accentron through two sets of perceptual experiments. In

the first set (this sub-section), we evaluated the system under the standard FAC470

setting, i.e., the test L1 and L2 speakers were seen during training. In the second

set (Section 5.3), we evaluated the system under the zero-shot FAC setting,

where the L1 speaker and/or the L2 speaker were unseen during training.

For the standard FAC setting, we used the union of the training sets of all 28

speakers to train the system. During inference, we used BDL as the L1 speaker,475

who then had been “seen” during training. First, we compared the proposed

approach against two state-of-the-art FAC approaches:
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• Baseline1: the FAC system proposed by Zhao et al. [15], a one-to-

one FAC approach based on seq2seq model. This baseline system trains

a seq2seq PPG-to-speech synthesizer for each L2 speaker, and drives the480

synthesizer with PPGs extracted from an L1 speaker. As such, the baseline

system requires training separate models for each L2 speaker.

• Baseline2: the system proposed by Liu et al. [16], a reference-free

many-to-many FAC approach based on a novel recognizer-synthesizer ar-

chitecture. The system is trained on 105 speakers from CSTR VCTK485

dataset [86]. Audio samples were produced by feeding the test utterances

through their system, which is provided as a courtesy by Liu et al. Due

to the implementation differences between the systems, we conducted two

post-processing steps to ensure a fair comparison. First, as the accent con-

version model of Liu et al. was trained on VCTK speakers, the stop-token490

predictions on L2-ARCTIC test utterances are not robust, occasionally

resulting in a few seconds of white noise at the end of speech in accent

conversion syntheses. To solve this issue, we manually removed the trailing

white noises in these test utterances. Second, we resampled the syntheses

of Liu system from 22.05 kHz to 16 kHz to make the sampling rate be495

consistent with other systems.

We conducted listening tests through Amazon Mechanical Turk9 to rate

three perceptual attributes of the synthesized speech:

• Accentedness: : The test asked participants to rate the degree of foreign

accentedness of each utterance in a 9-point scale (1-no foreign accent; 9-500

very strong foreign accent), which is commonly used in the pronunciation

literature [87]. Participants were told that the native accent in this task

was General American.

• Acoustic quality: The test asked participants to rate the acoustic qual-

9https://www.mturk.com
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ity of each utterance through a standard 5-point Mean Opinion Score505

(MOS; 1-bad, 5-excellent).

• Voice identity: The test asked participants to rate the voice similarity

between the FAC syntheses and the original L2 speech through a 14-

point Voice Similarity Score (VSS) [88]. For each FAC-L2 utterances pair,

participants were required to decide whether the two utterances were from510

the same speaker and then rate their confidence in the decision on a 7-

point scale (1: not confident at all; 3: somewhat confident; 5: quite a bit

confident; 7: extremely confident). The VSS was computed by collapsing

the above two fields into a 14-point scale: -7 (definitely different speakers)

to +7 (definitely the same speaker). To minimize the influence of accent,515

the two utterances had different linguistic content and were played in

reverse, following [1].

Instructions were given in each test to help participants focus on the target

speech attribute. For example, in the accentedness test, participants were asked

to “Try to ignore the audio quality (noise, distortions). Please focus only on520

the speaker’s accent, for example, their pronunciation, rhythm, and fluency”.

Test utterances were randomly selected from our test set, and the presentation

order was counter-balanced. Additionally, in each listening test, we included

five calibration utterances to detect if participants were cheating. We excluded

ratings of the calibration utterances from the data analysis [89]. We recruited525

18 participants for each listening test. All participants resided in the United

States, and they passed a qualification test that asked them to identify different

regional accents in the United States.

5.2.1. Comparison to the baseline system

Accentedness. Participants rated 20 utterances per system (5 utterances530

for each test L2 speaker). These utterances shared the same linguistic content

across all the systems to ensure a fair comparison. Additionally, participants

also rated the same set of sentences from the original L1 and L2 speakers as a
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Table 2: Accentedness (1-no foreign accent, 9-very strong foreign accent) results and acoustic

quality (1-bad, 5-excellent) results under standard FAC setting. All the results are shown as

average ± 95% confidence intervals.

System Accentedness Acoustic quality

Original L2 7.11 ± 0.21 3.67 ± 0.28

Original L1 1.06 ± 0.12 4.90 ± 0.10

Baseline1 4.63 ± 0.10 3.47 ± 0.14

Baseline2 6.25 ± 0.39 3.12 ± 0.13

Proposed 3.39 ± 0.14 3.51 ± 0.15

reference. Results are shown in the first column of Table 2. Accentron received

significantly lower ratings of foreign accentedness (3.39) than the original L2535

utterance (7.11), though not as low as those of the original L1 utterance (1.06).

These results suggest that our proposed seq2seq FAC model can effectively re-

duce foreign accentedness from the L2 speech. Accentron also outperformed the

two baseline systems (Baseline1: 4.63, 27% relative improvement, p � 0.001;

Baseline2: 6.25, 46% relative improvement, p� 0.001).540

Acoustic quality. As shown in the second column of Table 2, the proposed

method achieved an MOS of 3.51, which is comparable to Baseline1 (3.47, p >

0.5) but significantly higher than Baseline2 (3.12, 13% relative improvement,

p � 0.001). The original L1 speech received the highest MOS (4.90), followed

by the original L2 speech (3.67). Note that the MOS ratings of Accentron are545

closer to those of the original L2 speech than to the original L1 speech, possibly

due to native listeners confounding acoustic quality with intelligibility [1], and

therefore, they may be influenced by the intelligibility and provide lower ratings

for non-native speech. Thus, the proposed system achieves similar acoustic

quality as the baseline systems (or better), but unlike them does not require550

training a separate model for each new test L2 speaker.

Voice identity. Participants rated 20 pairs of utterances per system (5

pairs of utterances for each test L2 speaker). Each pair consisted of a FAC ut-

terance and an utterance randomly selected from the L2 speaker. Voice identity
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Table 3: Voice identity results under standard FAC setting. Voice Similarity Score ranges

from -7 (definitely different speakers) to +7 (definitely the same speaker). All the results are

shown as average ± 95% confidence intervals.

System Voice Similarity

Baseline1 5.05 ± 0.28

Baseline2 3.81 ± 0.29

Proposed (All pairs) 5.05 ± 0.31

Proposed (Intra-gender) 5.29 ± 0.30

Proposed (Inter-gender) 4.80 ± 0.35

results are shown in Table 3. Accentron achieved a 5.05 VSS, indicating that555

participants were “quite confident” that the FAC syntheses and the L2 speech

were produced by the same speaker. These ratings are comparable to those of

Baseline1 (5.05 VSS, p > 0.5) and significantly higher than those of Baseline2

(3.81 VSS, 33% relative improvement, p � 0.001). It is worth noting that the

L1 speaker in Baseline1 had the same gender as the L2 speaker, whereas Accen-560

tron used the same L1 speaker for all L2 speakers. As a result, syntheses from

Accentron included both intra (same)-gender FAC pairs and inter (different)-

gender FAC pairs, the latter being more challenging due to the differences in

prosody and pitch range. Although the VSS on inter-gender pairs (4.80) was

lower than that on intra-gender pairs (5.29) and Baseline1, the difference was565

not significant (p = 0.14). These results suggest that the proposed system can

generate FAC syntheses that greatly resemble the voice identity of L2 speakers

of any gender, using a canonical reference L1 speaker.

5.2.2. Performance on reverse FAC

To evaluate Accentron on the reverse FAC task, we synthesized testing ut-570

terances using the accent embeddings from NJS, TXHC, YKWK, and ZHAA,

and the speaker embedding from BDL. Table 4 shows the accentedness, acoustic

quality, and voice identity results of the reverse FAC evaluation. Accentron re-

ceived a 5.58 accentedness rating, much closer to that of the original L2 speech
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Table 4: Accentedness (1-no foreign accent, 9-very strong foreign accent) results, acoustic

quality (1-bad, 5-excellent) results, and voice identity results (-7-definitely different speakers,

+7-definitely the same speaker) of reverse foreign accent conversion under standard condition.

All the results are shown as average ± 95% confidence intervals.

System Accentedness Acoustic quality
Voice Similarity Voice Similarity Voice Similarity

(All pairs) (Intra-gender) (Inter-gender)

Proposed 5.58 ± 0.35 3.24 ± 0.17 4.91 ± 0.34 5.11 ± 0.35 4.71 ± 0.32

(7.11) than to the original L1 speech (1.06), indicating that our approach was575

able to impart an L2 accent to utterances from an L1 speaker. Accentron also

received a 3.24 MOS, significantly lower (p = 0.02) than the MOS of the “di-

rect” FAC syntheses (3.51), a result that is likely due to the correlation between

acoustic quality and intelligibility –see Section 5.2.1. Finally, Accentron received

a 4.91 VSS, indicating that raters were “quite confident” that the reverse FAC580

syntheses and the L1 speech were produced by the same speaker; we found no

significant differences between the voice identity ratings of reverse and direct

FAC syntheses. Thus, we can conclude that Accentron can also operate in the

reverse direction, generating non-native utterances with the voice identity of a

native speaker.585

5.3. Subjective evaluations under zero-shot FAC setting

In the second set of subjective evaluations, we evaluated the proposed system

under the zero-shot FAC setting, where the L1 speaker and/or the L2 speaker

were unseen during training. The zero-shot FAC setting is appealing for real-

world applications since it requires minimal data from the target speaker. First,590

we compared the performance of Accentron when using seen/unseen L1 or L2

speakers during inference. Then, we characterize its performance as a function

of the number of available L2 utterances.

5.3.1. Comparing different conditions in zero-shot foreign accent conversion

We considered four different conditions in this experiment, as summarized595

in Table 5. In condition SS, the L1 speaker and the L2 speaker were both

27

Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
Table 5: The four conditions in zero-shot FAC experiment.

L1 speaker

Seen Unseen

L2 speaker
Seen Condition SS Condition US

Unseen Condition SU Condition UU

seen during training. Note this condition is the same as the system evaluated in

Section 5.2.1, so it serves as a best-case scenario. In condition US, the L1 speaker

was unseen during training, and the L2 speaker was seen during training. In

condition SU, the L1 speaker was seen during training, and the L2 speaker was600

unseen during training. Finally, in condition UU, the L1 speaker and the L2

speaker were both unseen during training. Thus, condition UU was the most

challenging of the four.

To ensure that the test speakers were unseen during training, we trained four

models using different training sets. In Condition SS, we used the same model605

as in the standard FAC condition. In Condition US, we excluded CLB from the

training set and used it as the test L1 speaker. In Condition SU, we excluded

the four test L2 speakers from the training set. In Condition UU, we excluded

the four test L2 speakers and CLB from the training set, and we also used CLB

as the test L1 speaker. For unseen L1/L2 speakers, we used the 50 utterances610

from the test set to generate the accent/speaker embedding. As before, we

conducted three types of listening tests through Amazon Mechanical Turk to

rate the accentedness, acoustic quality, and voice similarity of the synthesized

speech. In addition, we kept the participants the same as those in the first

experiment, so that the results are comparable between different experiments615

(e.g., participants in the accentedness test for the two experiments were the

same).

Results from the accentedness, acoustic quality, and voice identity tests are

shown in Table 6. We found no statistically significant differences between

condition SS (best-case scenario) and the three more challenging conditions620
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Table 6: Accentedness (1-no foreign accent, 9-very strong foreign accent) results, acoustic

quality (1-bad, 5-excellent) results, and voice identity results (-7-definitely different speakers,

+7-definitely the same speaker) under zero-shot FAC condition. All the results are shown as

average ± 95% confidence intervals.

System Accentedness Acoustic quality Voice Similarity

Condition SS 3.39 ± 0.14 3.51 ± 0.15 5.05 ± 0.28

Condition US 3.33 ± 0.26 3.47 ± 0.13 4.99 ± 0.30

Condition SU 3.35 ± 0.25 3.50 ± 0.12 4.92 ± 0.28

Condition UU 3.30 ± 0.26 3.43 ± 0.12 4.59 ± 0.34

(US, SU, UU); p > 0.5 in all cases. This result suggests that Accentron has no

trouble generalizing to unseen L1 or (and) L2 speakers during inference without

any degradation in accentedness, acoustic quality, and voice identity.

5.3.2. Influence of the number of available L2 utterances

For practical FAC applications, it is important to understand the minimum625

amount of data needed from a target speaker. Requiring L2 learners to record a

large amount of speech before they can hear their “golden speaker” voice can be

tedious and demotivating. On the other hand, training the system with insuffi-

cient speech data might significantly degrade synthesis quality. To characterize

the data requirements of Accentron under zero-shot FAC condition, we mea-630

sured its performance of the UU codition (unseen L1 speaker and unseen L2

speaker) as a function of the number of available L2 utterances. We used the

UU condition since it is the most flexible for real-world applications, and also

the most challenging, which provides a lower bound of performance. For these

experiments, we used 50 test L2 utterances to produce the speaker embedding635

during inference, and reduced the number from 50 to 1 (N = 50, 20, 10, 5, 1) and

re-evaluated system performance. Results are shown in Table 7. Reducing the

number of utterances from 50 to 1 has no impact on any of the three perceptual

measures (p > 0.5 in all cases). These results indicate that as little as a single

utterance (∼3 seconds of speech) is sufficient to generate accent conversions for640

a new unseen L2 speaker, with no impact on performance.
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Table 7: Accentedness (1-no foreign accent, 9-very strong foreign accent) results, acoustic

quality (1-bad, 5-excellent) results, and voice identity results (-7-definitely different speakers,

+7-definitely the same speaker) with different numbers of available L2 (non-native) utterances

during inference. All the results are shown as average ± 95% confidence intervals.

#L2 utterances
Accentedness Acoustic quality Voice Similarity

Proposed Fine-tuned Proposed Fine-tuned Proposed Fine-tuned

50 3.30 ± 0.26 3.03 ± 0.24 3.43 ± 0.12 3.54 ± 0.11 4.59 ± 0.34 4.97 ± 0.27

20 3.30 ± 0.22 3.47 ± 0.18 3.45 ± 0.11 3.48 ± 0.11 4.68 ± 0.30 4.65 ± 0.23

10 3.34 ± 0.26 3.84 ± 0.18 3.44 ± 0.12 3.46 ± 0.11 4.59 ± 0.29 4.06 ±0.26

5 3.32 ± 0.23 4.58 ± 0.10 3.43 ± 0.11 3.38 ± 0.10 4.42 ± 0.33 3.49 ± 0.34

1 3.31 ± 0.25 4.72 ± 0.08 3.43 ± 0.12 3.24 ± 0.13 4.57 ± 0.29 3.73 ± 0.35

To some extent, the above result is to be expected since test utterances are

only used to compute the speaker embedding. Thus, we also examined whether

test utterances could instead be more beneficial if they were used to fine-tune a

pre-trained FAC system. Starting with a pre-trained UU model, we fine-tuned645

the model on each unseen L1-L2 speaker pair (i.e., CLB-NJS, CLB-TXHC,

CLB-YKWK, CLB-ZHAA) with N = 50, 20, 10, 5, 1 test utterances, resulting

in 20 fine-tuned models (4 speakers; 5 models with different number of training

utterances for each speaker) for the unseen L2 speakers. Results are also shown

in Table 7. We observe performance degradations in all three measurements650

when reducing the number of utterances from 50 to 1. When there are 50 test

utterances, the fine-tuned system shows a marginal improvement compared to

the zero-shot model (i.e., without fine-tuning), though the differences are not

statistically significant (Accentedness: 3.03 vs. 3.30, p = 0.03; Acoustic qual-

ity: 3.54 vs. 3.43, p = 0.18; Voice identity: 4.97 vs. 4.59, p = 0.25). When655

decreasing the number from 50 to 20, the fine-tuned system achieves compa-

rable performance as the zero-shot system (p > 0.5). Surprisingly, however,

fine-tuning the systems with fewer than 20 utterances degrades performance

compared to the zero-shot model. In the extreme case (with only 1 utterance),

the zero-shot model significantly outperforms the fine-tuned model in all three660
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measurements (Accentedness: 4.72 vs. 3.31, p � 0.001; Acoustic quality: 3.24

vs. 3.43, p = 0.01; Voice identity: 3.73 vs. 4.57, p� 0.001). These results fur-

ther speak of the robustness of Accentron in the zero-shot condition, and they

also illustrate the tradeoff between zero-shot learning models and fine-tuning

models in FAC.665

6. Discussion

We have proposed Accentron, a zero-shot many-to-many speech synthesizer

that can convert utterances from a source speaker to appear as if someone else,

and with a different accent, had produced it. We thoroughly evaluated the sys-

tem through a series of objective and perceptual listening experiments. Visual-670

izations through t-SNE show that Accentron captures the target voice identity

and accent, and that the speaker and accent embeddings are independent of

each other and effectively summarize the speaker and accent characteristic of

an utterance.

We evaluated Accentron in a standard FAC setting and compared it against675

two state-of-the-art baseline FAC systems. Compared to baseline 1 [15], Ac-

centron achieves significantly better (i.e., lower) ratings of foreign accentedness,

and similar acoustic quality and voice identity ratings. This is an important

finding since baseline 1 builds a dedicated model for each pair of L1-L2 speak-

ers, which one would expect would help capture voice identity more faithfully680

than Accentron’s many-to-many mapping. Although baseline 1 and Accentron

use the same backbone architecture for the seq2seq model, Accentron achieves

significantly better (lower) ratings of accentedness. A possible explanation for

this result is that baseline 1 is trained exclusively on L2 utterances. Thus, if

the L2 speaker has systematic substitution or deletion errors (e.g., Mandarin685

speakers from certain areas systematically substitute /SH/ with /S/), the cor-

rect pronunciations will be missing in their utterances. Thus, when the baseline

1 model is driven by L1 BNFs during inference, it has to interpolate these

missing pronunciations, which leads to noticeable segmental errors. In con-
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trast, Accentron avoids this potential issue since it is trained using both L1690

and L2 speech. Compared to baseline 2 [16], Accentron achieves better ratings

in all three measurements (accentedness, acoustic quality, and voice identity).

Though Accentron and baseline 2 both use a seq2seq architecture, Accentron

has two additional components: an acoustic model and an accent encoder to

extract the linguistic content and accent embeddings, respectively, from an L1695

reference during inference. These two embeddings capture the L1 segmental

and prosodic patterns, respectively, which are shown to be essential to achieve

advanced FAC performance.

We also evaluated Accentron on a “reverse FAC” task, where the goal was

to impart an L2 accent to a native utterance. Results on this task corroborates700

the t-SNE visualizations, and suggest that Accentron can also preserve an L2

accent and implant it into an L1 speaker’s utterance. Combined, results from the

direct and reverse FAC tasks indicate that the proposed system can disentangle

linguistic content, voice identity, and accent in speech signals, instead of merely

memorizing mappings between different speaker pairs.705

Finally, we also evaluated Accentron in a zero-shot FAC setting. First, we

compared all four combinations in which the L1 speaker and L2 speakers could

have been seen/unseen during training (i.e., SS, SU, US, UU). And we found

no significant differences among the four conditions in terms of accentedness,

acoustic quality, or voice identity. Thus, Accentron performs equally well under710

a standard FAC setting (condition SS) and a zero-shot FAC setting (condition

UU), which indicates that it generalizes to unseen L1 and L2 speakers without

the need to re-train or fine-tune the model.

Can Accentron generalize to unseen accents? In principle, the Accentron

architecture can naturally generalize to unseen accents –in the same way that715

it is able to model unseen speakers. However, this requires access to sufficient

training data on a large number of accents. The Speech Accent Archive has

hundreds of accents, but unfortunately each speaker only produces less than one

minute of speech, which is insufficient for training the FAC model (empirically, at

least one hour per speaker is needed). Its counterpart, the L2-ARCTIC corpus,720
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has substantially more speech data per subject (around one hour), but only

has six accents, which is insufficient to achieve reasonable transferability to an

unseen accent. Thus, while we believe that Accentron can be used to generate

unseen accents, this ability can only be truly assessed when more accented

speech corpora become available.725

Our results under both standard and zero-shot FAC setting indicate that

Accentron can generate FAC synthesis with high-quality, and can achieve it

with limited data from new L1 and L2 speakers (one utterance, or around three

seconds of speech). This capability can dramatically simplify the deployment of

pronunciation-training tools (our envisioned target application). When deploy-730

ing conventional FAC models, one needs to design and implement the model

training pipeline, as it requires training a dedicated model for each target L2

speaker. Running the training pipeline is usually resource- and time-consuming,

and therefore, one has to include specific modules to manage the server’s compu-

tational resources (e.g., an asynchronous queue was used in [3]). Such systems735

are hard to scale to an increasing number of users, due to the heavy resource

demands. Instead, Accentron only requires running the model inference pipeline

when producing FAC synthesis, and the inference can be accomplished in real

time, thus essentially reducing the resource demands and simplifying the ap-

plication design and deployment. In addition, in previous FAC studies (e.g.,740

[11, 12, 15]), inter-gender conversion usually achieved inferior performance than

intra-gender conversion, due to the mismatch in pitch ranges. As a result,

when deploying these methods into practical applications, they have to use a

reference L1 speaker that has the same gender as the target L2 speaker. In

contrast, Accentron achieves similar voice identity ratings for intra-gender pairs745

and inter-gender pairs, which gives more flexibility when choosing the reference

L1 speakers in the pronunciation-training tool. Finally, Accentron significantly

reduces the data required for each new L2 speaker from hours to seconds. As

a result, the L2 learners only need to go through a simple speaker enrollment

process (recording several seconds of their speech), before practicing with their750

“golden speaker” voices, which makes Accentron an ideal system for performing
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pronunciation-training studies at scale.

7. Conclusion and future work

In this paper, we have proposed Accentron, a zero-shot learning system

that can generate accent conversion for any L2 speaker (seen or unseen). Our755

proposed approach is in contrast to most of existing FAC approaches, which

require building a separate model for each L2 speaker. The proposed approach

first trains separate models to extract L1 bottleneck features, L1 accent embed-

dings, and L2 speaker embeddings. Then it uses a seq2seq model to transform

L1 bottleneck features to accent-converted Mel-spectrogram, conditioned on an760

L1 accent embedding and L2 speaker embedding. Our results suggest that the

system can successfully transform L1 speech to match the voice identity of an

L2 speaker while using a small amount of data from the L2 speaker.

One possible future direction of this work is to improve its robustness in

generating long utterances. Currently, our system uses a location-sensitive at-765

tention mechanism [35] in the seq2seq model, which can fail when the utterances

are too long [90] (e.g., longer than 10 seconds). To solve this problem, an alter-

native attention mechanism could be used, such as Gaussian mixture attention

mechanism [91], which has been shown to be more robust in generating long

utterances [90]. An additional potential improvement would be to add an aux-770

iliary decoder to perform phoneme recognition (during training) [8, 70]. Such

auxiliary decoder would guide the hidden representation produced by the en-

coder to preserve phonetic information, enforcing the synthesized speech to be

phonetically reasonable and improving synthesis quality [8, 70].

References775

[1] D. Felps, H. Bortfeld, R. Gutierrez-Osuna, Foreign accent conversion in

computer assisted pronunciation training, Speech communication 51 (10)

(2009) 920–932.

34

Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
[2] K. Probst, Y. Ke, M. Eskenazi, Enhancing foreign language tutors–in search

of the golden speaker, Speech Communication 37 (3-4) (2002) 161–173.780

[3] S. Ding, C. Liberatore, S. Sonsaat, I. Lučić, A. Silpachai, G. Zhao,
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