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Abstract
While standard speaker diarization attempts to answer the ques-
tion “who spoke when”, many realistic applications are inter-
ested in determining “who spoke what”. In both the conventional
modularized approach and the more recent end-to-end neural
diarization (EEND), an additional automatic speech recognition
(ASR) model and an orchestration algorithm are required to
associate speakers with recognized words. In this paper, we pro-
pose Word-level End-to-End Neural Diarization (WEEND) with
auxiliary network, a multi-task learning algorithm that performs
end-to-end ASR and speaker diarization in the same architecture
by sharing blank logits. Such a framework allows easily adding
diarization capabilities to any existing RNN-T based ASR mod-
els without Word Error Rate (WER) regressions. Experimental
results demonstrate that WEEND outperforms a strong turn-
based diarization baseline system on all 2-speaker short-form
scenarios, with the capability to generalize to audio lengths of 5
minutes.
Index Terms: Speaker diarization, ASR, word-level, end-to-end,
auxiliary network

1. Introduction
Speaker diarization is the task of partitioning speech into homo-
geneous segments according to speaker identities. The conven-
tional approach is a combination of multiple individually trained
modules, including voice activity detection (VAD), speaker
turn segmentation, speaker encoder and clustering. Each mod-
ule has been extensively studied to improve speaker diariza-
tion, including personalized VAD [1], better speaker turn detec-
tion [2], fine-tuning speaker encoders for specific scenarios (e.g.
ECAPA-TDNN [3] for short queries), and various clustering
algorithms [4–6]. More recently, the research community has
been exploring supervised end-to-end approaches including UIS-
RNN [7], DNC [8], frame-level end-to-end neural diarization
(EEND) [9], and its other variants [10–14]. Other methods are de-
scribed and discussed in literature reviews and tutorials [15, 16].

Most of the speaker diarization systems above mentioned
output timestamped segment-level speaker labels (i.e. “who
spoke when”), which are usually less useful for applications such
as meeting or recording summarization. For most real-world
applications, these speaker labels need to be associated with
words recognized by an ASR system (i.e. “who spoke what”).
This involves a complicated multi-module architecture with an
orchestration algorithm to merge ASR and diarization results
based on segment timestamps. Both modules are also required
to be synchronized to have similar latency for the best results.
To address these challenges, there have been a few pioneering
proposals for joint modeling of word-level speaker diarization

with ASR, summarized in Section 2.
Inspired by the multi-output, multi-task learning work [17]

and many other ASR-auxiliary learning studies [18, 19], we
extend the ASR-auxiliary multi-task architecture to include an
auxiliary network for speaker diarization, with a separate encoder
and joint network for predicting speaker labels. We freeze the
pretrained ASR and assess our method on various test scenarios:
public and simulated data, short-form and long-form audios,
2-speaker and 3+ speaker scenarios. Experiments show that
WEEND significantly outperforms the turn-based diarization
baseline on Callhome by 25%, demonstrates superior quality
across all 2-speaker short-form test cases and generalizes up to
5 minutes of 2-speaker long-form audios with no performance
degradation. For speech that involve 3+speakers, WEEND is
capable of predicting speakers but requires sufficient in-domain
data (as shown by the training and evaluation on large amounts
of simulated data). End-to-end speaker diarization on audios that
are much longer (e.g. over 30 minutes) entails cross-segment
historical context in training and remains to be a challenge.

2. Related work
Shafey et al. [20] proposed directly inserting speaker role tags
into the transcripts and training as a standard ASR. However, the
problem was constrained to a 2-speaker doctor-patient classifica-
tion problem, which does not work in generic speaker diarization
tasks1. Another related category of work is speaker attributed
ASR (SA-ASR), which typically takes the additional input of
speaker profiles and identifies speaker profile indices based on
an attention mechanism [21–24]. In the absence of enrolled
speaker profiles, the SA-ASR model performs speaker clustering
on internal embeddings [25]. Moreover, SA-ASR involves an
inherent turn detection where it segments speech according to
speaker change points. Target speaker ASR (TS-ASR) [26–29]
can also be considered as diarizing target speaker speech via
enrolled speaker embedding extraction. These methods that rely
on extracting speaker embeddings utilize sensitive biometric in-
formation which can be exploited for unintended purposes and
are sub-optimal from a privacy point of view [30].

The main contributions and novelty of our work lie in the
following aspects: (1) We propose a novel Recurrent Neural
Network Transducer (RNN-T) based ASR-diarization multi-task
learning framework, where both tasks are strongly coupled by
sharing blank logits. (2) Our approach adds diarization capa-
bilities to any frozen RNN-T based ASR model with no WER
regression. (3) Our paper presents a much simpler pipeline with
less privacy concerns, by removing components for enrollment,

1https://github.com/google/speaker-id/
tree/master/publications/WEEND#
baseline-with-inserted-speaker-tags
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speaker profiles, and cross-segment clustering.

3. System descriptions

For each utterance, we recognize the spoken words and pre-
dict the corresponding speakers simultaneously. For the tar-
get sequence, we tokenize the transcript with a wordpiece
model and meanwhile construct a same-length speaker label
sequence. Within each utterance, we map raw speaker labels
(e.g. “speaker:A”) to integer-indexed speaker labels in a “first
come, first serve”, order-based fashion. That is, the N th speaker
that starts speaking is labeled as <spk:N>. Note that permuta-
tion invariant training (PIT) is also promising, but we will leave
that for future work. In the following sections, we describe the
blank sharing multi-output setup in Section 3.1. Section 3.2
introduces our proposed method and its main modifications.

3.1. RNN-T with multi-output joint networks

We follow the RNN-T ASR architecture in Wang et al. [17].
Specifically, the joint network of an RNN-T model [31] fuses
audio features extracted by the encoder with the text features ex-
tracted by the prediction network. Formally, let the encoder
output be [f0, . . . , fT−1] and the prediction network output
be [g0, . . . , gU−1], where ft ∈ RDa , gu ∈ RDl . t and u
denote the time and label sequence indices, Da and Dl de-
note acoustic and text feature dimensions. The ASR symbol
space Y consists of a special <blank> token for non-emission
and a set of V − 1 non-blank wordpieces, i.e., Y = {y0 =
<blank>, y1, . . . , yV −1}. The joint network hidden embed-
ding ht,u is merged from the acoustic and text features:

ht,u = P · ft +Q · gu + bh ∈ RDh (1)

where P , Q are projection matrices and bh is the bias term. The
raw logits st,u before softmax are computed:

st,u = A · tanh(ht,u) + bs ∈ RV (2)

where A is the projection matrix, bs is the bias term. We use the
hybrid auto-regressive transducer model [32] and the factorized
posterior probability distribution over Y can be formulated as:

Pt,u(y
v|f0:t, g0:u) = (1− bt,u) · softmax(st,u[1:])[v − 1]

(3)

for v = 1, . . . , V − 1, with yv 6= <blank>, where the factor-
ized blank distribution bt,u is defined as:

bt,u := Pt,u(<blank>|f0:t, g0:u) = sigmoid(st,u[0]) (4)

To extend the RNN-T architecture for auxiliary tasks, we
introduce additional last linear layer parameters Aaux and baux

s .
Blank logits are shared between ASR and the auxiliary task to
ensure output synchronization across tasks. Denote the auxil-
iary task output space is Yaux = {<blank>, y1

aux, . . . , y
Vaux−1
aux },

where Vaux is the size of the auxiliary label space including the
shared blank. We re-use the blank logits from ASR (2) and the
auxiliary task raw logits can be expressed this way:

saux
t,u = [st,u[0], Aaux · tanh(ht,u) + baux

s ] ∈ RVaux . (5)

For the inference procedure, ASR blank emissions are di-
rectly shared. Whenever the ASR beam search emits a non-blank,
we apply softmax on the auxiliary logits saux

t,u to obtain the prob-
abilities over the auxiliary label space Yaux:

Pt,u(Yaux|non-blank, f0:t, g0:u) = softmax(saux
t,u[1:]) (6)
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Figure 1: Diagram of the proposed ASR-diarization multi-task
architecture with an auxiliary network of an auxiliary encoder
and a separate joint network sharing ASR blank logits. Dotted
lines indicate the newly added designs. Solid outlined modules
are frozen during training.

and select the auxiliary label with argmax(·) on the softmax
logits.

3.2. Proposed multi-task ASR and diarization system

In the context of speaker diarization, auxiliary labels are now
speakers. The synchronization between ASR and diarization nat-
urally enables the word-level speaker diarization task. Therefore,
we further extend the multi-output architecture from Section 3.1,
and propose this neural architecture with the addition of an aux-
iliary network in Figure 1 including an auxiliary diarization
encoder, intermediate layer activations wiring and an auxiliary
joint network. The necessity of these is further discussed in
Section 4.6.

3.2.1. Auxiliary diarization encoder

We insert a second, auxiliary encoder for diarization, which gen-
erates a new encoder feature output f aux

t ∈ RDaux via Eq. (1).
The motivation of this encoder is to extract speaker-related fea-
tures. The encoder can be any model architecture capable of
modeling temporal context, such as LSTM [33], transformer or
conformer.

3.2.2. Intermediate activations

We feed the ASR encoder intermediate activations as the in-
put to the auxiliary diarization encoder. According to these
work [19, 34], we expect the model to perform the best when
using intermediate layer outputs instead of raw audio features or
last layer outputs.

3.2.3. Auxiliary joint network

We define a separate auxiliary joint network for diarization label
sequence prediction. Following the notation (1), we introduce
the auxiliary parameters Paux, Qaux and bhaux to learn the hidden
embedding from the acoustic and text features, as well as the
final projection parameters Aaux and baux

s .
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Table 1: Diarization public and simulated datasets statistics

Datasets Domain # Spk Avg length (sec) Total hours (hr)
Train Eval Train Eval

AMI Meeting 3-4 15/30/60 2039 81 9.1
Callhome Telephone 2 15/30/60 301 14 1.7

Fisher Telephone 2 15/30/60 600 1920 28.7
Sim 2spk Read 2 57.9 36.1 6434 39.7
Sim 3spk Read 3 68.5 43.1 7137 43.3
Sim 4spk Read 4 94.2 59.4 9848 57.0

4. Experiments
4.1. Datasets

Our public datasets are listed in the first 3 rows of Table 1:
1. AMI [35]: we use the official “Full-corpus-ASR partition”

training and test subsets. The speaker label ground truth was
obtained based on the word-level annotations in the v1.6.2
AMI manual annotation release.

2. Callhome [36]: we use the Callhome American English
Speech official training and evaluation subsets.

3. Fisher [37]: we withhold a test subset of 172 utterances2 from
Fisher English Training Speech and use the rest for training.
The training data are segmented into 15, 30 and 60 second

segments. The segmentation avoids chopping in the middle of a
sentence. For the test splits, we evaluate the original full-length
audios and their short-form segments of 30, 60 and 120 seconds.
The official metadata RTTMs are converted to target word and
speaker label sequences.

Besides public data, we simulate multi-speaker utterances
from LibriSpeech [38] for data augmentation to mitigate the lack
of training data. For each simulated conversation, we sample
M unique speakers and N utterances from each speaker, and
randomly drop 0 ∼ 2 utterances for variety. Remaining samples
are concatenated in random order, with inserted pause (0.2 ∼ 1.5
seconds) and cross-fade (0 ∼ 0.2 seconds). Simulated data
statistics are also listed in Table 1. For training sets, we sample
from LibriSpeech train-clean-100h, train-clean-360h and train-
other-500h. For testsets, we sample from test-clean and test-
other.

4.2. Model architecture

We extract 128-dimensional log-Mel filterbank features using a
32ms Hamming window with a hop length of 10ms. Frames are
stacked by 4 and sub-sampled by 3 to generate 512-dimensional
features at 30ms frame rate. The causal ASR encoder consists
of 12 conformer layers [39] of 512 dimensions with funnel
pooling [40] and outputs Da = 512 feature dimensions. The
embedding-based decoder computes language model features
of Dl = 640 dimensions, based on two previous non-blank
tokens [41]. The ASR joint network hidden dimension is Dh =
640. A last linear layer projects the hidden dimension to the
wordpiece model vocabulary size V = 4096.

The 5th ASR Conformer layer outputs are fed into our auxil-
iary network, which has 9 LSTM layers, each layer with 1024
hidden nodes and 512 output nodes. The auxiliary joint has
a hidden dimension of Daux

h = 640, and the same prediction
network outputs are used in the auxiliary joint. We pre-define a

2https://github.com/google/speaker-id/blob/
master/publications/Multi-stage/evaluation/
Fisher/eval_whitelist.txt

Table 2: ASR and diarization performance of the baseline and
proposed models. WERs (%) are reported with substitution (S),
deletion (D) and insertion (I) error rates.

Testsets WER (S/D/I) WDER (%)
Baseline Proposed

Callhome 45.9 (12.8/9.7/23.3) 10.3 7.7
Fisher 20.5 (8.7/10.4/1.4) 3.6 8.0

Sim 2spk 8.1 (6.4/1.0/0.7) 4.2 4.1
Sim 3spk 8.3 (6.5/1.0/0.8) 4.2 3.6
Sim 4spk 8.1 (6.4/1.0/0.7) 4.5 5.1

Table 3: Short-form test WDER (%) on various audio durations.

Testsets Short-form WDER (%)
Lengths (s) Baseline Proposed

Callhome
30 13.6 9.3
60 9.8 8.9
120 10.5 8.9

Fisher
30 8.6 3.8
60 4.8 3.7
120 4.0 3.7

speaker set from N = 1 to 8, so the last linear layer projects the
joint hidden embedding to Vaux − 1 = 8. For training, we ini-
tialize the ASR audio encoder, text predictor, and joint network
from a pre-trained ASR model [41] and freeze the parameters of
these components (i.e. only the auxiliary network parameters are
updated during training). The loss function is a standard RNN-T
loss but we only use the speaker label RNN-T loss (with the
shared blank logits) because ASR is frozen.

4.3. Baseline: turn-based diarization

We set up the turn-based diarization baseline following the “turn-
to-diarize” system [2, 42] without pairwise speaker turn con-
straints and apply multi-stage clustering [43]. We pair it with the
same RNN-T ASR model described in Section 4.2 to retrieve
word-level speaker labels, specifically by assigning speakers to
the recognized words based on the maximum speaker overlap in
duration for each word.

4.4. Metrics

We report the Word Error Rate (WER) for ASR quality, and the
Word Diarization Error Rate (WDER) from [20] for diarization
quality. We choose WDER over other metrics like cpWER [25]
or Diarization Error Rate (DER). WDER is more decoupled
from ASR quality than cpWER. DER is not applicable in our
problem because word-level end-to-end systems do not involve
word timings.

4.5. Experimental results

ASR and diarization quality is reported in Table 2. We noticed
the high WER of the ASR model, due to various reasons includ-
ing: Callhome’s low quality ground truth; ASR not trained with
overlapping speech; non-standard annotations (e.g. “mhm”, “y-
ye- yes”); and domain mismatch (ASR not trained on read speech
like LibriSpeech). For diarization, our model outperforms the
baseline on 5-min Callhome test data by 25%. On simulated test
data, our model shows the capability to diarize multi-speaker ut-
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Table 4: Impact of intermediate layer selection on WDER (%).
Callhome is abbreviated as CH.

Intermediate CH Fisher SimLayer Selection

0th Conf layer (features) 23.8 24.5 10.4
5th Conf layer (proposed) 7.7 8.0 4.3
12th Conf layer (last) 33.6 37.3 46.9

Table 5: Training data augmentation impact on WDER (%). The
second row excludes simulated data from training. The last row
further drops 30/60s training segments, i.e. only trained on 15s
data.

Model CH CH Fisher Fisher SimShort Short

Proposed 7.7 9.0 8.0 3.7 4.3
-Simulated 11.6 9.8 12.3 5.4 22.2

-30/60s segments 28.8 22.5 22.1 15.7 26.8

terances, up to 4 speakers over 90 seconds. However, we suspect
the performance degrades on longer audio duration, as shown by
the 10-min Fisher test data evaluation result.

Therefore, we take a deeper look into the short-form per-
formance on segmented test utterances in Table 3. Our pro-
posed model outperforms the baseline on short-form Callhome
and Fisher significantly across various segment lengths, partic-
ularly on 30s segments by 32% and 56%. The performance
does degrade if the audio gets very long (e.g. compared against
10-min Fisher in Table 2). The long-form degradation of the
proposed system stems from the mismatch between training seg-
ments and the full length test segments, and can be addressed by
carrying cross-segment speaker information to the training pro-
cess. Meanwhile, the baseline system performs better on longer
test segments (monotonically decreasing WDER on Fisher and
Callhome, except for its 60s metric). This observation is con-
sistent with previous studies on the clustering-based baseline
system [43]: clustering algorithms usually perform reasonably
well on very long utterances, but suffer from short segments due
to insufficient samples.

4.6. Ablation studies

We explore how much the network architecture affects model
performance. If we completely remove the auxiliary encoder
(i.e. use the ASR encoder output along with a separate joint
network directly), the model simply does not learn diarization
properly. If we keep the auxiliary encoder, intermediate layer
output selection leads to different outcomes. As shown in Table 4,
neither the first layer nor the last layer works well. This aligns
with our expectation and conclusions from previous work [19,
34]. ASR encoder tends to discard speaker knowledge towards
the last layer. Raw features are also hard for training to converge
to the optimal space. There exists a sweet spot where a certain
intermediate layer works the best.

Table 5 summarizes our data ablation studies. Even though
the simulated data is from a different domain, it still effectively
mitigates the public data insufficiency. Fisher and Callhome
short-form improvements are the least, most likely due to the
fact that we have enough 2-speaker telephony training data from
Fisher (almost 2k hours). Furthermore, if the training data only
include 15s segments, the model quality degrades dramatically
on all testsets. This matches the audio duration generalization

Table 6: Pre-segmented short-form AMI WDER (%), breakdown
by reference number of speakers. AMI has lots of overlaps but
the ASR system by itself does not support overlapping speech.
This leads to considerable label confusion around overlapping
speech and quick speaker changes. Hence, we report a modified
WDER3which does not count words that overlap with any other
word in the ground truth.

AMI Baseline WDER (%) Proposed WDER (%)
Lengths 1spk 2spk 3spk 4spk 1spk 2spk 3spk 4spk

30-sec 18.6 10.0 8.8 8.4 1.1 5.8 10.1 15.5
60-sec 10.8 6.3 5.6 6.9 0.8 5.2 12.2 17.1

120-sec -4 6.4 4.4 9.3 - 9.8 15.8 20.8

discussion in Section 4.5 and suggests that we should include
longer training segments if feasible.

4.7. Limitations

On multi-speaker, 30-minute AMI test data, we observed that the
proposed model did not work. To investigate further, we break
down the AMI WDER by the number of speakers in Table 6.
Our model performs better than the baseline on 1-speaker and
2-speaker scenarios up to 60 seconds of audio duration. Di-
arization quality starts to drop when the audio gets longer, or
when the number of speakers increases. Based on this and other
experimental results, we summarize the limitations of our model.

Firstly, a sufficient amount of in-domain training data is
crucial for model performance. Even though out-of-domain
data helps to some extent (as shown by the simulated data in
Table 5), with only 80 hours of AMI training data, the model still
can not learn to diarize AMI competently in our experiments.
This is the data domain mismatch. On the other hand, full-length
utterances (e.g. 1-hour audio) can not be directly fed into training
batches because of hardware memory constraints. Training data
is typically sliced into shorter segments, while test data can be
of arbitrary length and extremely long. This leads to the audio
duration mismatch between training and inference.

5. Conclusions
This paper explored word-level end-to-end neural diarization
via auxiliary networks, a framework that allows adding speaker
diarization capability to any off-the-shelf RNN-T based ASR
model, without WER regression. It is also a simpler architec-
ture, with less privacy risk, as it does not involve enrollment,
speaker profiles, clustering, or turn-based segmentation. We
observed superior performance over our conventional modular-
ized system on 2-speaker short-form scenarios, even with an
out-of-domain frozen ASR model. Compromised quality was
observed on 3+speaker and long-form scenarios due to data do-
main and duration mismatches in the training data. To address
this, future work would include developing advanced data aug-
mentation techniques to simulate large amounts of in and out of
domain conditions with arbitrary number of speakers, as well
as cross-segment training with historical context for long-form
generalization. Lastly, this architecture can be further extended
to serialized output training (SOT) for overlapping speech.

3https://github.com/google/speaker-id/
tree/master/publications/WEEND#
wder-and-modified-wder-without-overlapping-words

4For the evaluation on 120-sec segments, since there are only 6 single
speaker test examples, we do not list these results.
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