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ABSTRACT

In this paper, we present a novel approach to adapt a sequence-to-
sequence Transformer-Transducer ASR system to the keyword spot-
ting (KWS) task. We achieve this by replacing the keyword in the
text transcription with a special token <kw> and training the system
to detect the <kw> token in an audio stream. At inference time,
we create a decision function inspired by conventional KWS ap-
proaches, to make our approach more suitable for the KWS task.
Furthermore, we introduce a specific keyword spotting loss by adapt-
ing the sequence-discriminative Minimum Bayes-Risk training tech-
nique. We find that our approach significantly outperforms ASR
based KWS systems. When compared with a conventional keyword
spotting system, our proposal has similar performance while bring-
ing the advantages and flexibility of sequence-to-sequence training.
Additionally, when combined with the conventional KWS system,
our approach can improve the performance at any operation point.

Index Terms— Keyword spotting, sequence-to-sequence mod-
els, transformer transducer, speech recognition

1. INTRODUCTION

Keyword spotting (KWS), also referred to as spoken term detec-
tion, is the task of detecting specific words or multi-word phrases
in speech. KWS has wide applications in speech data mining, audio
indexing, and phone call routing [1]. Specifically, with the advent of
voice assistants in the past few years, keyword spotting has become a
common technique to “wake” the voice assistants as a gateway to en-
gage in further conversations with them (e.g. “Okay Google,” “Hey
Siri,” or “Alexa”).

The keyword spotting task is closely related to the automatic
speech recognition (ASR) task. The main difference between the
two tasks is that KWS only focuses on the detection accuracy of a
small set of phrases while ASR tries to identify all spoken words
in a recording. In recent years, sequence-to-sequence (seq2seq),
end-to-end (E2E) trained ASR models, especially those following
the RNN-T [2] paradigm have achieved state-of-the-art results in
terms of word error rate, e.g., Transformer-Transducer (T-T) [3] and
Conformer-Transducer [4].
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Inspired by the quality gains in E2E ASR models, in this work,
we explore using Transformer-Transducer for KWS. A straightfor-
ward solution to KWS using this technique is to train a T-T model
that outputs both the keyword and other spoken tokens. Then the
keyword detection can be done by inspecting the presence of the key-
word string in the output ASR results. This approach is sub-optimal
since the detection accuracy can be easily skewed by minor ASR er-
rors (e.g., mis-recognizing “Okay Google” as “Okay GOOGL”), es-
pecially when detecting multi-word and multi-syllable key phrases,
or when using grapheme based ASR models. In addition, simply
adopting a general purpose ASR model for KWS would suffer from
the data sparsity issue given that generally the key phrases appear
much less frequently than other spoken words1, leading to low de-
tection accuracy.

To mitigate the aforementioned issues, we propose several novel
techniques to adapt the T-T ASR model to better fit the KWS task.
First, to reduce the negative impact of ASR errors on the keyword
detection performance, we constrain the T-T model to treat the key-
word audio segment as a coherent acoustic event. The model outputs
a single keyword token <kw> instead of the entire keyword string
when detecting a keyword in the input audio stream. To achieve this,
we modify the text transcription of the spoken utterance by replac-
ing the keywords with the special token <kw>, and then train the
model to output both regular text tokens and the special keyword
tokens. Second, we propose a model training loss that directly min-
imizes the KWS error rates as a solution to the data sparsity issue.
Lastly, we formulate a keyword confidence score as the model’s out-
put instead of parsing the ASR decoding results to make the KWS
prediction, which allows the T-T based KWS model to perform on
different operation points by adjusting its prediction threshold, of-
fering flexibility for different application scenarios.

We conduct an extensive performance comparison between the
proposed T-T based KWS model and a suite of strong conventional
non-ASR [7] and ASR-based KWS systems with different model
configurations. Overall, we find this system provides better KWS
performance than the baselines. We also observe that the proposed
T-T based KWS model is complimentary to conventional non-ASR
KWS models, enabling system fusion for use cases that require
higher level of detection accuracy.

The rest of the paper is organized as follows. In Section 2, we
compare the proposed work with related prior works. Section 3 de-
scribes the proposed modeling strategies. We introduce the baselines
systems in Section 4. We then offer the experimental setup and re-
sults in Sections 5 and 6, respectively. Finally, we discuss and high-
light the key findings of this work in Section 7.

1Similar to the rare words issue [5, 6] in E2E ASR.
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2. RELATION TO PRIOR WORK

The traditional approaches to solving the keyword spotting problem
use the Hidden Markov Model (HMM), which is improved by us-
ing deep neural networks (DNNs) to characterize the acoustic fu-
tures [8–12]. In [13], the authors train a DNN to classify each frame
into either the keyword or the “filler” audio and then apply a pos-
terior handling method to produce a final confidence score. This
method is refined in [14] by adopting CNN networks to take into
account both time and frequency relationships of the speech sig-
nal, and also in [15–17] by using recurrent neural networks that can
help capture longer temporal dependencies in the speech sequence.
E2E approaches [7,18] further improve detection accuracy and lower
the resource requirements, by directly producing a keyword spotting
score and using a compact neural network topology. The proposed
work differs from these conventional approaches by using a seq2seq
model to capture longer-term dependencies and avoid the need of
using forced-alignment to produce frame-level training labels, since
the seq2seq model implicitly learns an alignment between the input
acoustic and output text sequences.

Several works have also explored using seq2seq models for de-
tecting keywords in continuous speech. In [19], the authors propose
a LSTM encoder followed by a CTC decoder to train a keyword
spotting system that creates phoneme lattices for efficient search.
In [20], N-best results are indexed for searching using attention mod-
els. In [21], an E2E model is trained to detect a keyword without us-
ing an explicit speech recognizer. In [22], the authors propose a way
to bias a general purpose ASR model towards a specific keyword of
interest. In contrast with previous approaches, our proposed model
uses a probability score from the softmax output as in [7], avoids the
need of N-best results that require a more computationally expensive
inference process, and allows us to introduce direct optimization of
the keyword token during training (Section 3.2).

3. METHOD

3.1. TT-KWS: Transformer-Transducer Keyword Spotting

During the last several years, transducers have shown state-of-the-art
performance on speech recognition tasks [3]. The T-T model con-
sists of an audio encoder that converts input features into acoustic
embedding vectors, a label encoder that converts text tokens into lin-
guistic embedding vectors, and a joint network that takes the acoustic
and linguistic embedding vectors as the input and outputs a proba-
bility distribution over a set of predefined text tokens. In this work,
we use an audio encoder constructed with Transformer blocks [23],
and a label encoder comprising LSTM layers. The joint network is
composed of fully-connected layers and outputs graphemes.

For the KWS task, we treat the speech segment that corresponds
to the keyword as a single coherent acoustic event. Our main pro-
posal, referred by us as TT-KWS, is to edit the ASR labels at train-
ing time, substituting every keyword appearance by a special to-
ken <kw> that is part of our grapheme vocabulary, inspired by the
speaker turn detection ideas in [24] where speaker diarization is im-
proved by using a T-T to detect speaker changes.

At inference time, our TT-KWS system outputs this special to-
ken when it detects a keyword in the audio stream. For the key-
word spotting task, we can ignore all the other tokens and focus only
on the special <kw> token. This approach can be easily adapted
to any other keywords with minimal changes to the model training
pipeline, adding flexibility to the keyword spotting modeling pro-
cess. A model trained for one keyword can be used as a pre-trained
model for a different keyword, without having to use a force align-
ment method to create fine-grain labels, saving from possible force
alignments errors and also simplifying the possible path for federat-

ed/ephemeral [25] training of KWS models.

3.2. MBR training

To further optimize the model for the KWS task during training, in-
spired by the Minimum Bayes-Risk (MBR) training technique [26–
28], we present a training loss that directly optimizes the recogni-
tion accuracy of the keyword token. The idea is to first compute
the KWS false negative (FN) and false positive (FP) rates on the N-
best hypotheses (produced by a beam search) during training, and
then formulate a training loss that minimizes the expected FN and
FP rates.

Mathematically, let Hij be the j-th hypothesis of the i-th train-
ing sample, Pij be the probability score associated with the Hij hy-
pothesis, and Ri be the reference transcription for all the hypotheses
of the i-th training sample. To adapt MBR training to the keyword
spotting task, we count the number of the special keyword token
<kw> in Hij and Ri, referred to as KH

ij and K
R
i , respectively. We

then calculate the number of keyword token insertions (FPij ) and
deletions (FNij) as follows,

FPij = max(0,KH
ij −K

R
i ),FNij = max(0,KR

i −K
H
ij ), (1)

and compute the per sample loss as

Lij = Pij ·
αFPij + βFNij

K
R
i + ǫ

, (2)

where α and β control the relative strength of each sub-component
and ǫ is a small constant value to avoid numeric errors. We note that
for any particular training utterance, only one of FPij and FNij is
non-zero, but across the entire training set we expect a more diverse
distribution. Finally we can compute the per batch training loss as

L =
∑

i

∑

j

Lij − λ logP (Y|X), (3)

where − logP (Y|X) is the negative log probability of the reference
transcript Y conditioned on the input acoustic features X. For sim-
plicity, we refer the negative log probability loss as the RNN-T loss.
The regularization term λ controls the strength of the RNN-T loss.

3.3. Scoring method

KWS systems often output a confidence score such that different
thresholds can be applied to make the final detection decision based
on application scenarios. Therefore, instead of making a binary de-
cision based on the keyword appearance in the ASR result, we take
the softmax output value of the <kw> token at the end of the joint
network as the KWS score, which is a direct measure of the net-
work’s confidence on the keyword at a given frame. To obtain the
score of the system on an utterance, we take the maximum score that
the network outputs for the entire utterance.

4. BASELINES

4.1. Baseline 1: End-to-end KWS

To compare our proposal to a state-of-the-art system, we train an
E2E KWS baseline [7] that uses stacked Singular Value Decompo-
sition Filters (SVDFs) to approximate fully-connected layers with a
low rank decomposition. This model is optimized for low-resource
use cases. More details of this baseline can be found in [7].

4.2. Baseline 2: ASR based KWS

We construct an ASR system for the KWS task as another baseline.
This ASR model has the same architecture as the proposed TT-KWS
model but is trained with the regular RNN-T loss, predicting the
original text transcription verbatim.



Bigram edit distance scoring: We compute a KWS score for this
baseline to allow a fairer comparison with the other systems. For
every bigram in the hypothesis text, we compute its grapheme-level
ASR edit distances (ignoring spaces and cases) against the two key-
words of interest (“Hey Google” and “Okay Google”). We then find
the bigram with the minimum edit distance GEDmin and use e−GEDmin

as the KWS score. For example, for hypothesis “Okay GOOGL,” its
KWS score is e−1 ≈ 0.37 since it contains one deletion error. This
score provides tolerance towards miss-spelled keyword recognition.

5. EXPERIMENTAL SETUP

In all experiments and for all systems, we use the same train and
evaluation datasets, feature front-end, and data augmentation. When
handling user data, we abide by Google AI principles [29] and Pri-
vacy principles [30].

5.1. Evaluation metrics

To compare the systems on different operating points, we use Detec-
tion Error Trade-off (DET) curves, where different False Negative
(FN) rate vs. False Positive (FP) rate operating points are displayed
by varying the detection threshold. We also report the Equal Error
Rate (EER), where the FP and FN are equal. In addition, we present
the results at specific FP points of interest, where the FP rate is rel-
atively low (0.5% and 1%). The reason is that in applications we
are more willing to trade higher FN rates for a lower FP rate but not
vice versa. A high FP rate would trigger the keyword too often and
hinder the user experience.

5.2. Data description and preparation

Our dataset is composed of vendor collected speech data that con-
tains different English accents (from US, India, UK and Australia),
varying acoustic conditions (e.g. inside vehicles, phone speech, and
background noises), balanced gender distribution, and equally dis-
tributed near-field and far-field audio. The data is divided into posi-
tive and negative utterances. A positive utterance contains any of the
keywords “Hey Google” or “Okay Google” followed by a speech
query. A negative utterance does not contain any of the keywords.
Negative utterances include around 15k of the so-called confusable
utterances, with words that are phonetically close to the target key-
words. We split the dataset for training, validation and evaluation
purposes. The training set has 4300h of positive data (4M utterances)
and 4000h of negative data (3.6M utterances). The training set is
augmented by artificially corrupting clean utterances using a room
simulator, adding varying degrees of noise and reverberation [31],
producing 25 additional augmented versions for each utterance. The
validation set, which is used for training monitoring and checkpoint
selection, contains 700h of positive and 500h of negative data. The
test set contains 3800h of positive and 7000h of negative data, also
including confusable utterances.

For each utterance, we extract 40-dim log-Mel filter-bank en-
ergies from a 25ms window, stack every 4 frames, and sub-sample
every 3 frames, to produce a 160-dim feature vector with a stride of
30 ms as the input to the audio encoder.

5.3. System configurations

5.3.1. End-to-end KWS baseline

We train two configurations for the baseline E2E KWS system [7].
The Baseline KWS small configuration has 330K parameters with
seven SVDF layers, where the first four SVDF layers act as an en-
coder and the last three SVDF layers act as a decoder. Each of the

Table 1: Hyper-parameters of a Transformer block.

Large Small

Input feature projection 160 160
Dense layer 1 1024 128
Dense layer 2 256 32

Number attention heads 8 8
Head dimension 64 64

Dropout ratio 0.1 0.1

encoder SVDF layers has 576 nodes with a memory of 6 and is fol-
lowed by a 64-dim projection layer except for the last encoder layer,
which is followed by a 32-dim projection layer. Each of the decoder
SVDF layers has 32 nodes with a memory of 24 and is followed by
a 32-dim projection layer except for the last decoder layer, which
is followed by a final projection layer to predict a binary KWS la-
bel. On top of the Baseline KWS small configuration, the Baseline

KWS large configuration increases the encoder SVDF layers to have
4096 nodes and a 128-dim projection layer except that the last en-
coder SVDF layer has a 16-dim projection layer. The decoder SVDF
layers remain unchanged, resulting in 3.9M parameters.

5.3.2. Transformer-Transducer based configurations

For both the ASR based KWS baseline and the proposed TT-KWS
model, we compare two size configurations. The audio encoder con-
sists of Transformer blocks, see Table 1 for the hyper-parameters of
each block under different configurations.

Specifically, for the large configurations, referred in Table 2 as
ASR baseline large, TT-KWS large and TT-KWS + MBR large, the
audio encoder consists of 15 Transformer blocks, and the label en-
coder is a 128-dim LSTM layer. The joint network projects both
the audio and label encoder outputs to two embedding vectors of
the same size (i.e., the size of the audio encoder’s output); the two
embedding vectors are then summed and projected to a probabil-
ity distribution over the 75 output graphemes (the English alphabet,
punctuation, the keyword token <kw>, and special characters such
as “$”). This configuration has around 13M parameters.

On the other hand, the small configurations referred in Table 2 as
ASR baseline small, TT-KWS small and TT-KWS + MBR small, have
seven smaller Transformer blocks with hyper-parameters detailed in
Table 1. We reduce their label encoders to a 32-dim LSTM layer,
resulting in a total number of 350k trainable parameters.

To train the models with the RNN-T loss we use the same hyper-
parameters as in [3]. Afterwards, to further optimize to the KWS
task with the proposed MBR loss, we warm-start the TT-KWS +

MBR models with the the TT-KWS models trained with the RNN-
T loss, and then fine-tune them with a combination of the RNN-T
and MBR losses as described in Eq. (3) following a fixed learning
rate of 10−5. Empirically, we set the hyper-parameters {α, β, λ} in
Eqs. (2) and (3) to {1.0, 1.0, 0.01} and compute the MBR loss on
the 4-best hypotheses, produced by a beam search of size 8.

6. RESULTS AND DISCUSSION

We summarize the evaluation results in terms of EER as well as other
key operating points of interest (1% FP and 0.5% FP) in Table 2.

For the low-resource condition (i.e., the “small” models), the
baseline E2E KWS model trained with the SVDF layers achieves the
best performance. Among the T-T based KWS systems, we observe
a 31% relative EER improvement (8.24% vs. 5.68%) when modify-
ing the T-T model to output the special keyword token <kw> instead
of the entire keyword string (e.g., “Okay Google”), which shows that



Table 2: Performance of the systems under different operation
points. For the ASR baselines, they do not have operation points that
can achieve a 1% or 0.5% false positive rate. The “Fusion 2-best”
configuration combines the “Baseline KWS large” and “TT-KWS +
MBR large” models.

EER FN @ 1% FP FN @ 0.5% FP

Baseline KWS small 3.78% 5.07% 5.78%

ASR baseline small 8.24% - -
TT-KWS small 5.68% 11.68% 17.49%

TT-KWS + MBR small 5.24% 8.70% 12.18%

Baseline KWS large 3.38% 4.34% 4.91%
ASR baseline large 3.55% - -

TT-KWS large 3.37% 4.35% 5.01%
TT-KWS + MBR large 3.27% 4.17% 4.78%

Fusion 2-best 3.09% 3.75% 4.25%

by treating the keyword audio segment as a coherent acoustic event
we can constrain the model to focus on predicting the keyword holis-
tically. Adding the MBR training loss further improve the EER by
7.7% relative (5.68% vs. 5.24%). More importantly, within the low
FP region, the MBR training loss is more effective, reducing the FN
rate by 25.5% (1% FP) and 30.4% (0.5% FP) relatively, compared
with the models trained with only the RNN-T loss. The MBR loss
minimizes the expected FN and FP rates during training, and the
results here show that this effect can be translated to unseen data.

For the condition that allows more modeling resources (i.e., the
“large” models), the proposed TT-KWS model trained with the MBR
loss achieves the best performance overall. In Fig. 1, we observe that
the TT-KWS + MBR large and Baseline KWS large systems perform
similarly on all operation points, with the proposed TT-KWS + MBR

large model achieving a moderate 3.3% relative EER improvement.
Both systems outperform the ASR baseline large configuration by a
large margin on every operation point. We note that the bigram edit

distance scoring method described in Section 4.2 enables us to com-
pute the DET curve of the ASR baseline large system, extending it
from operating on a single FN/FP configuration (i.e., performing an
exact match between the predicted keyword string and the reference
transcript.) to a more flexible score-based approach.
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ASR baseline large (EER = 3.55%)
TT-KWS + MBR large (EER = 3.27%)
Fusion 2-best (EER = 3.09%)

Fig. 1: Detection error trade-off (DET) curves of various KWS sys-
tems. The dot on the DET curve of the ASR baseline large model
shows its performance without the bigram edit distance scoring

method (Section 4.2).
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Fig. 2: Detection error trade-off curves of the TT-KWS models
trained with the MBR loss.

We are also interested in the effectiveness of the MBR training
loss in different conditions. As shown in Fig. 2, in general, MBR is
able to improve system performance at every operation point. The
benefit of this modeling technique is more significant when the num-
ber of parameters is limited. We note that this technique is especially
effective in the low FP operation region. This result suggest that the
MBR training technique can concentrate the modeling capacity on
the main task of KWS when the resource is more limited.

Finally, we perform a system fusion by summing up the KWS
scores of two individual systems Baseline KWS large and TT-KWS

+ MBR large and then make the prediction. The results are shown
in the last row of Table 2. On the EER score, we observe a signifi-
cant 8.6% (vs. Baseline KWS large) and 5.5% (vs. TT-KWS + MBR

large) relative performance gain compared with the individual sys-
tems. Within the low FP regions, the improvements are even larger,
resulting in up to 13.6% relative FN rate improvement (4.34% vs.
3.75% at 1% FP) compared with the individual models. In addition,
based on Fig. 1, the system fusion consistently outperforms the indi-
vidual systems on all operation points. These results suggest that the
proposed TT-KWS model is complementary to a conventional E2E
KWS system.

7. CONCLUSION

This paper shows that a TT-KWS model can achieve results that
are comparable with or better than conventional KWS models, es-
pecially when resources are less constrained. Additionally, our re-
sults suggest that for CPU and battery constrained devices such as
lower capability phones, the conventional KWS models remain the
best option. KWS models that utilize ASR techniques often require
large model sizes and computationally intensive decoding process,
which make it challenging to deploy on mobile devices that have
small battery and restricted computational power. In these use cases,
we prefer small footprint models to be able to listen and process au-
dio continuously. On the other hand, power plugged devices (e.g.,
smart speakers, smart displays, and vehicles), where computational
power is less restricted, enable us to use more complex T-T based
KWS systems. These systems allow us to take advantage of larger
datasets and increase the diversity of the keyword phrases. A system
combination between the conventional KWS and TT-KWS yields
the best performance, making the system fusion solution suitable for
applications that require more accurate results.
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