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Abstract

In this work, we investigate the possibility of replacing
the `2 loss with perceptually derived loss functions (SSIM,
MS-SSIM, etc.) in training an end-to-end dehazing neu-
ral network. Objective experimental results suggest that
by merely changing the loss function we can obtain signif-
icantly higher PSNR and SSIM scores on the SOTS set in
the RESIDE dataset, compared with a state-of-the-art end-
to-end dehazing neural network (AOD-Net) that uses the `2
loss. The best PSNR we obtained was 23.50 (4.2% relative
improvement), and the best SSIM we obtained was 0.8747
(2.3% relative improvement.)

1. Introduction
Due to the existence of air pollution, dust, mist, and

fumes, images taken in an outdoor environment will often
contain complicated, non-linear and data-dependent noises,
known as haze, which challenges many high-level com-
puter vision tasks such as object detection and recognition.
Taking autonomous-driving as an example, hazy or foggy
weather will obscure the vision of on-board cameras and
create a loss of contrast in the subject with light scattering
through the haze particles, adding superior difficulties for
self-driving tasks. Thus, dehazing is a highly desirable im-
age restoration technique to enhance better results of com-
putational photography and computer vision tasks.

Early approaches of dehazing often require additional
information such as scene depth to be given or captured
from comparing multiple different images of the same
scene [1, 2, 3]. While these methods can effectively en-
hance the visibility of hazy images, their tractability is lim-
ited since the required additional information or multiple
images are not always available in practice.

To address this problem, a single-image dehazing sys-
tem, which aims at restoring the underlying clean image
from a observed hazy image, is more feasible for real ap-
plication and has received an increased interests in recent
years. Traditional single-image dehazing methods exploit

natural image prior and perform statical analysis [4, 5, 6, 7].
More recently, dehazing algorithms based on neural net-
works [8, 9, 10] have shown state-of-the-art performance,
among which the AOD-Net [10] has the ability to train an
end-to-end system while outperforming the others on multi-
ple evaluation metrics. AOD-Net minimizes the `2 norm of
the difference between the haze and clean images. However,
the `2 norm suffers from a handful of known limitations
that may leave the dehazed image output of the AOD-Net
away from the optimal quality, especially considering about
its correlation with human perception of image quality[11].
On the one hand, `2 norm implicitly assumes a white Gaus-
sian noise, which is an oversimplified case that is not valid
in general dehazing cases. On the other hand, `2 treats the
impact of noise independently to the local characteristics,
such as structural information, luminance and contrast, of
an image. However, according to [12], the sensitivity of the
Human Visual System (HVS) to noise depends on the local
properties and structure of a vision.

Alternatively, the structural similarity index (SSIM), is
widely employed as a metric to evaluate image processing
algorithms from a more perceptual point of view. Besides,
it also possesses a differentiable property and can be used
as a cost function. Therefore, in this work, inspired by [13],
we propose to use loss functions that match with human
perception (e.g., SSIM [12], MS-SSIM [14]) as training ob-
jectives of a dehazing neural network developed based on
the AOD-Net [10]. We call this Perception-Aided Single
Image Dehazing Network: PAD-Net. We hypothesize that
even without changing the neural network architecture, the
PAD-Net will lead to better dehazing performance than its
baseline AOD-Net.

2. Related work
In this section, we briefly summarize the sinlge-image

dehazing methods that have been proposed in previous
works and compare their advantages and deficiencies.
Then, we proposed our perceptual guided end-to-end dehaz-
ing network that boosts the learning performance compared
to the baseline AOD-Net.
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The atmospheric scattering model has been widely used
in previous haze removal work [15, 16, 17]:

I(x) = J(x)t(x) +A(1− t(x)), (1)

where x indexes pixels in the observed hazy image, I(x) is
observed hazing image, and J(x) is the clean image to be
recovered. The parameterA denotes the global atmospheric
light, and t(x) is the transmission matrix defines as:

t(x) = e−βd(x), (2)

where β is the scattering coefficient of the atmosphere, and
d(x) represents the distance between the object and the
camera.

The key to a successful haze removal algorithm is to re-
cover the transmission matrix t(x), on which the majority
of the dehazing methods have focused through either phys-
ically grounded priors or data-driven approaches.

Conventional single image dehazing methods commonly
exploit natural image priors and perform statical analysis.
For example, [4, 5] demonstrate that the dark channel prior
(DCP) is informative to calculate the transmission matrix.
[6] proposed a color attenuation prior and created a linear
model for scene depth of the hazy image to allow for an ef-
ficient supervised parameter learning method, and [7] pro-
posed a non-local prior based on the observation that pixels
in a given cluster are often non-local and each color cluster
in the clear image became a haze-line in RGB space.

More recently, CNNs have been applied to the haze re-
moval application after demonstrated successes in many
other computer vision tasks. [9] exploits a multi-scale
CNN (MSCNN) that predicts a coarse-scale holistic trans-
mission map of the entire image and refines it locally. [8]
proposed the DehazeNet, a trainable transmission matrix es-
timator, and recovers the clean image combined with esti-
mated global atmosphere light. Both these methods learn
the transmission matrix from the CNN first and recover
the haze-free image with separately calculated atmospheric
light. Moreover, [18] proposed a complete end-to-end de-
hazing network names AOD-Net which takes the hazy im-
age as input and directly generates clean image output.

In this project, we adopt the transformed atmospheric
scattering model and the convolutional network architecture
proposed in [10] and aim at improving its performance by
utilizing perceptually motivated loss functions.

3. Proposed work

In this section, the proposed PAD-Net is explained.
We first introduce the transformed atmospheric scattering
model and the dehazing network architecture design based
on it, which we adopt the work in [10] to facilitate an
end-to-end single image dehazing. Then, we discuss the

perceptually-motivated loss functions that will be explored
in our project.

3.1. End-to-end Dehazing Network Design

Based on the atmospheric scattering model (1), the clean
image generated by our network can be formulated as:

J(x) = K(x)I(x)−K(x) + b, where

K(x) =

1
t(x) (I(x)−A) + (A− b)

I(x)− 1
,

(3)

where b is the constant bias whose default value is set to
1. Here, the core idea is to unify the two parameters in (1)
t(x) and A into one formula, i.e. K(x), and directly min-
imize the reconstruction errors in the image pixel domain.
Since K(x) is dependent on the input I(x), we in fact build
an input-adaptive deep model, and train the model by min-
imizing the reconstruction errors between its output J(x)
and ground truth clean image.

Therefore, the proposed deep neural network is com-
posed of two major parts: a K-estimation module to esti-
mateK(x) in (3) with five convolutional layers, and a clean
image generation modules that follows to produce the re-
covery clean image via element-wise calculation. The en-
tire network diagram of the PAD-Net is visualized in Fig. 1.

As depicted in Fig. 1, the five covolutional layers are im-
plemented with different filter sizes to capture multi-scale
features of the input hazy image and are concatenated with
intermediates layers in order to compensate the information
loss during convolutions, which is inspired by [8, 9]. Out-
put images (i.e., J(x) in (3)) from the network is then com-
pared with the ground truth clean image at the loss layer to
compute the error function for back propagation. This end-
to-end dehazing network can be easily embedded with other
deep models as a stage in high-level computer vision tasks
such as object detection, classification as well.

One thing to mention is that, the PAD-Net, inherited
from the AOD-Net [10], is a light-weighted network which
has only three convolutional filters. In fact, if we analyze
the atmospheric scattering model ((1) and (2)), we can find
that there are only three unknown parameters, β, A and
d(x), in the model. And in our adopted benchmark, RE-
SIDE dataset [18], the β and A are pair-wised selected con-
stants, and the depth map d(x) are either calculated from a
depth dataset such as NYU2 [19] or estimated with convolu-
tional neural network [20]. Therefore, the complexity of the
hazy model is relatively low. Given this observation, in our
work, we keep the setting of filter numbers in the AOD-Net
to facilitate a quick training while obtaining good learning
results.

3.2. Perceptual Loss Functions

At the loss layer, different error functions will be investi-
gated to optimize the image dehazing results and the results
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Figure 1. The network diagram of PAD-Net

will be compared. In the following sections we introduce
the error metrics that will be examined in our project. We
show their key features and how to compute their derivative
for backpropagation steps. These loss functions will be im-
plemented in the loss layer individually or jointly, specified
in Section 4.

1. The `2 error

The `2 norm of the error is generally chosen as the loss
function for image dehazing [10] given its simplicity and
convexity. The `2 norm penalizes large error, but is more
tolerant to small error, regardless of the underlying struc-
ture in the image. As a result, it sometimes produces
visible splotchy artifacts on the restored images. The
HVS, on the other hand, is more sensitive to luminance
and color variations in texture-less regions [21]. The loss
function for a patch P can be written as:

L`2(P ) = 1

N

∑
p∈P

(x(p)− y(p))2, (4)

where N is the number of pixels in the patch, p is the
index of the pixel, and x(p) and y(p) are the pixel val-
ues of the generated image and the ground truth image
respectively. Since ∂L`2(P )/∂q = 0,∀q 6= p., for each
pixel p in the patch, the derivate can be denoted as:

∂L`2(P )/∂x(p) = x(p)− y(p). (5)

Note that, even though L`2(P ) is a function of the patch
as a whole, the derivatives are back-propagated for each
pixel in the patch.

2. The `1 error

The `1 error is studied as an attempt to reduce the ar-
tifacts introduced by the `2 and bring different conver-
gence properties. Unlike the `2 norm, the `1 norm does
not over-penalize large errors. The error function of `1
is:

L`1(P ) = 1

N

∑
p∈P
|x(p)− y(p)|. (6)

The derivatives of the `1 is also simple. Similar to `2
norm, the derivatives of a certain pixel in a patch only
depends on the difference between its own value and the
ground truth value at the same location and do not rely
on other pixels in the same patch.

∂L`1(P )/∂x(p) = sign(x(p)− y(p)). (7)

The derivative of L`1(P ) is not defined at 0. However,
if the error is 0, we do not need to update the weight. So
here we use the convention that sign(0) = 0.

3. SSIM

Considering that image dehazing is a real-world applica-
tion that reproduces visually clear and pleasing images,
a perceptually motivated metric such as SSIM is worth
studying. SSIM is a perception-based model that consid-
ers image degradation as perceived change in structural
information, while also incorporating important percep-
tual phenomena, including both luminance masking and
contrast masking terms. Inheriting the definition of x(p)
and y(p) in (4), and let µx, σx2, and σxy be the mean
of x, the variance of x, and the covariance of x and y,
approximately, µx and σx can be viewed as estimates of
the luminance and contrast of x, and µxy measures the
structural similarity of x and y in terms of the tendency
that they vary together. Then, the SSIM for pixel p is
defined as:

SSIM(P ) =
2µxµy + C1

µ2
x + µ2

y + C1
· 2σxy + C2

σ2
x + σ2

y + C2

= l(p) · cs(p).
(8)

where the means and standard deviations are computed
with a Gaussian filer GσG

with standard deviation σG.
l(p) and cs(p) measure the comparisons of the lumi-
nance, and a combined contrast with structure similarity
between x and y at the pixel p, respectively. The loss



function for SSIM can be then defined as:

LSSIM (P ) =
1

N

∑
p∈P

1− SSIM(p). (9)

Note that (8) indicates that the computation of SSIM(p)
requires looking at a neighboring of pixel p since it in-
volves the mean and standard deviations of the Gaussian
filter GσG

on the pixel. This means that LSSIM (P ),
as well as its derivatives, cannot be calculated in some
boundary region of P.

However, the convolutional nature of the network studies
in this work allows us to write the loss as:

LSSIM (P ) = 1− SSIM(p̃). (10)

where p̃ is the center pixel of patch P . Again, this is be-
cause, even though the network learns the weights maxi-
mizing SSIM for the central pixel, the learned kernels are
then applied to all the pixels int eh image. Note that the
error can still be back-propagated to all the pixels within
the support ofGσG

as they contribute to the computation
of (10). More Formally, the derivatives of LSSIM (P ) at
pixel p can be computed as:

∂LSSIM (P )

∂x(q)
= − ∂

∂x(q)
SSIM(p̃)

= −
(
∂l(̃(p)

∂x(q)
· cs(p̃+ l(p̃) · ∂cs(p̃)

∂x(q)

)
,

(11)

where l(p̃) and cs(p̃) are the first and second term of
SSIM (i.e. (8)) and their derivatives are:

∂l(̃(p)

∂x(q)
= 2 ·GσG

(q − p̃) ·
(
µy − µx · l(p̃)
µ2
x + µ2

y + C1

)
, (12)

and

∂cs(̃(p)

∂x(q)
=

2

µ2
x + µ2

y + C2
·GσG

(q − p̃) · [(y(q)− µy)

− cs(p̃) · (x(1)− µx)],
(13)

where GσG
(q− p̃) is the Gaussian coefficient associated

with pixel q.

4. MS-SSIM

The choice of σG would impact training performance of
SSIM. Specifically, the network with smaller σG loses

the ability to preserve the local structure and reintroduce
splotchy artifacts in flat regions, while the network with
large σG tends to keep the noises in the proximity of
edges. Our work, we adopt the idea of multi-scale SSIM
from [13] in whichM different values of σG will be used
rather than directly fine tune its value to optimize the per-
formance of SSIM. Given a dyadic pyramid ofM levels,
MS-SSIM is defined as:

LMS−SSIM (P ) = lαM (p) ·
M∏
j=1

cs
βj

j (P ). (14)

where lM and csj are the terms design in (8) at scale M
and j, respectively. For convenience, we set α = βj = 1
for j = 1, ...,M . Similarly to (10), we can approximate
the loss for patch P with the loss computed at its center
pixel p̃:

LMS−SSIM (P ) = 1−MS − SSIM(p̃). (15)

The, the derivatives of the MS-SSIM loss function can
be written as:

∂LMS−SSIM (P )

∂x(q)

=

(
∂lM (p̃)

∂x(q)
+ lM (P̃ ) ·

M∑
i=0

1

csi(p̃)

∂csi(p̃)

∂x(q)

)
·
M∏
j=1

csj(p̃),

(16)

To speed up the training, in stead of computing M levels
of pyramid P , we adopt the approach proposed in [13]
and ues M different values for σG, each one being half
of the previous, on the full-resolution patch. In the loss
function defined in this work, σGi = 0.5, 1, 2, 4, 8.

4. Experimental Setup
4.1. Systems

In our experiment, the following error functions are ap-
plied to the loss layer of the proposed PAD-Net.
• Baseline: using `2 loss alone
• L1: using `1 loss alone
• SSIM: using SSIM loss alone
• MS-SSIM: using MS-SSIM loss alone
• MS-SSIM+L2: using a weighted sum of MS-SSIM

and `2 as the loss function:

LMSSSIM−L2 = α ·LMSSSIM +(1−α) ·GσM
G
·L`2 ,
(17)



A point-wise multiplication between GσM
G

and L`2 is
added for the `2 loss function term because MS-SSIM
propagates the error at pixel q based on its contribution
to MS-SSIM of the central pixel q̃, as determined by
the Gaussian weights.
• MS-SSIM+L1: using a weighted sum of MS-SSIM

and `1 as the loss function:

LMSSSIM−L1 = α ·LMSSSIM +(1−α) ·GσM
G
·L`1 ,
(18)

Similarly, the `1 loss is also weighted by the Gaussian
filter GσM

G
.

4.2. Data and evaluation metrics

The benchmark dataset for this project is the RESIDE
dataset [18], which has a large number of pictures for train-
ing the neural network and evaluating the dehazing perfor-
mance. The ITS (indoor images) and OTS (outdoor images)
sets from RESIDE provide a total number of over 400,000
images for training. Due to the limits of time and computa-
tional resources, we randomly sampled 10,000 images from
ITS and OTS as the training data for this work. Among
the 10,000 images, 2,790 are from IST and the rest 7,210
are from OTS, and they roughly takes the same percent-
age of number of images in the corresponding dataset, re-
spectively. We also randomly sampled another 1,000 non-
overlapping set of images as the validation data. All pro-
posed systems were evaluated on the held-out SOTS subset,
which contains 1,000 synthetic haze images (500 indoor and
500 outdoor images).

We used PSNR and SSIM as objective measurements of
dehazing performance. Due to the limited scope of this
project, we will not be able to run subjective evaluations
on the dehazing results.

4.3. Implementation details

We built our neural network and loss functions using Py-
Caffe [22] because it has been proven to be flexible enough
for research purposes while being able to support fast pro-
totyping. The neural network architecture of AOD-Net was
defined by following [10], and we referred to an open-
source pre-trained model [23] published by the original au-
thors to make sure that our implementation was as close to
the original AOD-Net as possible. Unless otherwise noted,
the base learning rate and mini-batch size of the systems
were set to 0.01 and 8, respectively. The networks were ini-
tialized using Gaussian random variables. We used a mo-
mentum of 0.9 and a weight decay of 0.0001, following
[10]. We also clipped the L2 norm of the gradient to be
within [-0.1, 0.1] to stabilize the network training process,
as suggested by [24]. All systems were trained on a Nvidia
GTX 1070 GPU for around 14 epochs, which empirically
ensures convergence.

Systems PSNR
Indoor Outdoor All

AOD-Net 21.01 24.08 22.55
L2 20.73 25.58 23.15
L1 20.27 25.83 23.05
SSIM 19.64 26.65 23.15
MS-SSIM 19.54 26.87 23.20
MS-SSIM+L1 20.16 26.20 23.18
MS-SSIM+L2 20.45 26.38 23.41

Table 1. PSNR results without fine-tuning

Systems SSIM
Indoor Outdoor All

AOD-Net 0.8372 0.8726 0.8549
L2 0.8235 0.9090 0.8663
L1 0.8045 0.9111 0.8578
SSIM 0.7940 0.8999 0.8469
MS-SSIM 0.8038 0.8989 0.8513
MS-SSIM+L1 0.8138 0.9184 0.8661
MS-SSIM+L2 0.8285 0.9177 0.8731

Table 2. SSIM results without fine-tuning

5. Results
5.1. Compare different loss functions

In the first set of experiments, we would like to inves-
tigate that which loss function provides the best objective
dehazing performance. For SSIM, the standard deviation of
the Gaussian filter was set to σG = 5. C1 andC2 in (8) were
0.01 and 0.03, respectively. For MS-SSIM, the Gaussian
filters were constructed by setting σiG = {0.5, 1, 2, 4, 8}.
The MS-SSIM+L1 loss function used α = 0.025, and
MS-SSIM+L2 used α = 0.1, following [13]. The re-
sults are summarized in Table 1 and Table 2. The AOD-
Net’s results were copied from the RESIDE dataset pa-
per [18], which was trained using the whole OTS and ITS
sets. To provide a fair comparison, we also used the L2
norm loss function to train on our training set. Overall,
the system MS-SSIM+L2 achieved the best performance
on both PSNR and SSIM, outperformed AOD-Net by 3.8%
and 2.1%, respectively. Although AOD-Net performed well
on indoor images, we found that when the number of train-
ing samples was the same, MS-SSIM+L2 achieved a sim-
ilar PSNR (20.45) compared with L2 (20.73) and a higher
SSIM (0.8285 v.s. 0.8235) in the indoor case. In terms
of performance on outdoor images, the proposed loss func-
tions generally worked better than the AOD-Net.

5.2. Fine-tuning MS-SSIM+L2

Based on the results above, we performed further fine-
tuning on system MS-SSIM+L2, expecting to see bet-



α
PSNR

Indoor Outdoor All
0.1 20.68 26.18 23.43
0.3 20.47 26.49 23.48
0.5 20.46 26.39 23.43
0.7 20.32 26.67 23.50
0.9 20.50 26.34 23.42

Table 3. PSNR results with fine-tuning on MS-SSIM+L2

α
SSIM

Indoor Outdoor All
0.1 0.8229 0.9266 0.8747
0.3 0.8197 0.9248 0.8722
0.5 0.8116 0.9226 0.8671
0.7 0.8140 0.9211 0.8676
0.9 0.8165 0.9204 0.8685

Table 4. SSIM results with fine-tuning on MS-SSIM+L2

ter performance. We first analyzed the learning curve of
the MISSIM-L2 system before fine-tuning, as illustrated
in Fig. 2. It can be seen from the plot that the learning
curve converged quickly and the learning errors fluctuate
from iterations to iterations, which indicated we may need
a smaller learning rate and a larger mini-batch size. Given
that, we used weights from a pre-trained AOD-Net model
[23] to initialize our network. During training, we applied
a smaller learning rate (0.002) and a larger mini-batch size
(16). We also tested on different α values to adjust the con-
tribution of MS-SSIM and L2 to the fused loss function.
All the other hyper-parameter were kept unchanged as in
Section 4.3. The results are summarized in Tables 3 and
4. For PSNR, setting α to 0.7 yielded the best performance
(23.50). For SSIM, the highest score (0.8747) was achieved
when setting α to 0.1. We also plot the learning curve after
fine tuning in Fig. 3 and it demonstrates that after fine tun-
ing, the error starts at a small value at the beginning of the
training due to the pre-train process. And the learning curve
is now smoother and flatter as a result of the better choice
of the learning rate and mini-batch size.

6. Discussion

From the results in Section 5 we can see that the pro-
posed loss functions work well on outdoor images, but not
as good on indoor testing samples. Part of the reason was
that our training set contains limited number of outdoor
samples, and the reported AOD-Net used around 40 times
more indoor samples than our implementation for training.
As we noted in Section 5.1, when we used the same training
set to train on the L2 norm and the proposed loss functions,
we achieved similar (PSNR) or better (SSIM) performance

Figure 2. A sample learning curve of MS-SSIM+L2 before fine-
tuning, the training loss curve was sampled every 10 iterations.

Figure 3. A sample learning curve of MS-SSIM+L2 after fine-
tuning with α = 0.1, the training loss curve was sampled every
10 iterations.

on indoor testing samples, not to mention that we have sig-
nificant higher outdoor dehazing performances.

Surprisingly, we found that by directly optimizing the
SSIM loss function, we did not obtain the optimal SSIM
performance on the test set. After taking a closer look at
our implementation, we found that we used a different stan-
dard deviation (1.5) for the Gaussian filter in the evaluation
SSIM function. When we set the standard deviation as 5 and
re-ran the SSIM evaluation, the SSIM score became 0.8597.
Though this result is not directly comparable with the other
systems, it is larger than when using 1.5 as the standard de-
viation. We did not use standard deviation 1.5 for training
the dehazing model because that will be ”cheating” – using
a parameter from the evaluation system. Still, it would be
interesting to see if setting standard deviation to 1.5 in train-
ing could produce optimal SSIM performance on the testing
data.

The learning curve of the training process converged
very fast, even after fine tuning, as depicted in Fig. 3. We
suspected that this was due to the fact that the parameter set
used for generating those synthetic images is small, there-
fore, the neural network might not need too many training
iterations to figure out the value of those parameters.

The training costs, in terms of time, for some of the pro-
posed cost functions (SSIM, MS-SSIM) were significant



Figure 4. Dehazing examples. (a) A synthetic haze image. (b) De-
hazed version of (a). (c) A real haze image. (d) Dehazed version
of (c)

higher than using the `2 norm. For one thing, computing
the gradient of those cost functions were of higher time
complexity, since the derivate of the `2 error only involves
the computation on the pixel itself while SSIM and MS-
SSIM needs to do Gaussian filtering among the patch, as
explained in Section 3.2 . For another, the `2 norm imple-
mentation was carefully optimized to take full advantages of
GPU computing, whereas our implementation was experi-
mental and built on PyCaffe’s python layers, which was rec-
ognized for having flexibility for fast prototyping but slow
in training. We believe that further implementation opti-
mization can bridge the gap of training cost between the `2
norm loss and the other loss functions.

Fig. 4 shows some dehaze example using the model
trained on the MS-SSIM+L2 loss function (α = 0.1). The
haze images are from the HTS set in RESIDE. We can see
that even though the dehazing neural network was trained
only on synthetic data, it can successfully remove haze from
both synthetic and real haze images.

7. Conclusion

In this project, we propose to use perception-motivated
loss functions to train an end-to-end dehazing neural net-
work. Compared with a baseline system that has the same
neural network architecture but uses the conventional `2
norm (MSE) loss function, we obtained significantly better
objective dehazing performance on the SOTS set on the RE-
SIDE dataset. The best PSNR we obtained was 23.50 (4.2%
relative improvement), and the best SSIM we obtained was
0.8747 (2.3% relative improvement). For future work, first,
we would like to train the proposed system using the full
OTS and ITS sets. Second, we will investigate system MS-
SSIM+L1 more closely – we did not have time to fine-tune
the parameters of this system, but the initial results were
still promising. Third, we are planning to conduct percep-
tual studies to ask human raters to judge the quality of the
dehazed images.

Action items Liu Zhao
Project idea 60% 40%
System implementation 40% 60%
Experiment and data analysis 40% 60%
Report and presentation 60% 40%

Table 5. Project management

In terms of logistics, the workload devision was fair
among the two teammates, the details are summarized in
Table 5. The project code is open-source, accessible on
GitHub at https://github.com/guanlongzhao/
single-image-dehazing.
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