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ABSTRACT 

Exemplar-based methods for voice conversion often use a 
large number of randomly-selected exemplars to ensure 
good coverage. As a result, the factorization step can be 
costly. This paper presents two algorithms that can be used 
to construct compact sets of exemplars. The first algorithm 
uses a forward selection procedure to build the exemplar set 
sequentially, selecting exemplar pairs that minimize the 
joint reconstruction error on source and target frames. The 
second algorithm uses a backward elimination procedure to 
remove exemplars that contribute the least to the 
factorization. We evaluate both selection strategies on voice 
conversion tasks using the ARCTIC corpus. Our results 
using objective measures and subjective listening tests show 
that both strategies can significantly reduce the size of the 
exemplar set (five-fold, in our experiments) while achieving 
the same performance on voice conversion. 

Index Terms—voice conversion, sparse reconstruction, 
exemplar selection 

1. INTRODUCTION 

Voice conversion (VC) aims to convert utterances from a 
source speaker to sound as if a target speaker had produced 
them. VC has a number of real-world applications, from 
building personalized text-to-speech synthesizers [1] to 
improving speaker spoofing systems [2]. A number of VC 
techniques have been proposed over the years, statistical 
mappings and frequency warping being among the most 
common. A new VC framework based on exemplars and 
non-negative matrix factorization (NMF) has recently 
emerged [3-6]. In this “exemplar-based” framework, the 
speech signal is decomposed into a sparse, non-negative 
weight matrix and a set of preselected exemplars. These 
exemplars are generally acoustic frames from the source and 
target speaker’s speech. VC is performed by applying NMF 
to the source utterance, and then combining the source 
weight matrix with the target exemplars; see Fig. 1.  

Exemplar-based methods have several advantages over 
statistical methods, e.g., based on Gaussian mixture models 
(GMM). Takashima et al. [3] have shown that exemplar-
based methods can produce more natural and higher quality 
speech than GMMs, while Wu et al. [5] have shown that 
they require smaller corpora than conventional methods [7]. 

                                                
1 Work supported by NSF awards 1619212 and 1623750. 

However, exemplar-based methods select exemplars 
randomly [3-6], so the exemplar set tends to be large (from 
1,000s to 10,000s) to ensure good coverage. As a result, the 
factorization step becomes time consuming; NMF is NP-
hard, though polynomial-time approximations exist [8]. 

To address this issue, this paper describes two exemplar 
selection algorithms that can be used to build a compact 
exemplar set. The first algorithm operates in a forward 
fashion, incrementally adding new exemplars to the set in 
order to minimize the joint reconstruction error on source 
and target frames. The second algorithm operates in a 
backward fashion: starting from a large exemplar set, it 
sequentially removes exemplars that contribute the least to 
the factorization. Through a series of objective tests (Mel-
cepstral distortion) and subjective listening tests, we show 
that the proposed algorithms can provide a more compact 
exemplar set without sacrificing VC performance. 

Relation to prior work. Two prior studies have 
addressed the problem of building a compact exemplar set. 
Aihara et al. [9] optimize the exemplar set using an NMF 
variant that relaxes negativity constraints and a fast solver 
based on the alternating direction method of multipliers. In 
their study, an initial set of 5,000 exemplars was trimmed 
down to 1,000 exemplars without significant loss of quality. 
According to our results, further reductions in size (down to 
200 exemplars) are also possible without introducing 
noticeable distortions. Liberatore et al. [10] use phoneme 
centroids as exemplars, referred to as “anchors” in their 
original paper, so their approach automatically leads to a 
compact exemplar set (i.e., the size of the phoneme set). In 
contrast, our approach does not require phonetic labels, and 
avoids averaging out spectral detail. 
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Fig. 1. Exemplar-based voice conversion: (a) exemplar selection 
during training; (b) voice conversion through NMF 
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2. LITERATURE REVIEW 

Much of the research on VC has focused on two approaches: 
statistical mappings and frequency warping. A conventional 
statistical approach is to model the joint distribution of 
source and target spectra with a GMM [1, 7], then map 
source spectra into target spectra using MMSE or ML 
criteria. Other statistical models, such as neural networks 
[11], partial least squares [12] and HMMs [13] have also 
been used with success. A second major approach consists 
of performing frequency warping to “align” the spectral 
power of the two speakers [14]. Frequency warping can 
generate speech of high acoustic quality, though the voice 
conversions tend to be less convincing. Hybrid approaches, 
which use GMMs to model the distribution of local 
frequency warps, have shown to achieve good acoustic 
quality and voice conversion results [15].  

Sparse representations have recently garnered much 
attention as an alternative approach to VC. Takashima et al. 
[3] first used an exemplar-based sparse method to tackle the 
problem of VC in noisy environments by including noise 
exemplars in addition to source and target exemplars. Wu et 
al. [5] refined the sparse representation by jointly estimating 
the weight matrix using low- and high-resolution features to 
preserve temporal structure and spectral details. Aihara et al. 
[16] extended the exemplar-based method to perform many-
to-many VC using dictionaries from a pool of speakers. 

3. CONVENTIONAL NMF-BASED VC 

Let 𝑋 ∈ 𝑅$×&  denote a source utterance of length 𝑇, each 
frame represented by a 𝐷 -dimensional vector of non-
negative features (e.g., STFT spectra). Given an exemplar 
set 𝐴* ∈ 𝑅$×+  containing 𝑁  exemplars from the source 
speaker, NMF decomposes 𝑋 as follows, 

𝑋 ≈ 𝐴*𝐻 (1) 

where 𝐻 ∈ 𝑅+×& is a weight matrix constrained to be non-
negative and sparse. 𝐻 can be approximated by minimizing 
the objective function, 

𝑑01 𝑋, 𝐴*𝐻 + 𝜆 𝐻 5, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	𝐻 ≥ 0 (2) 

𝑑01(∙) is the KL-divergence, and 𝜆 is a sparsity parameter. 
To generate a target utterance 𝑌 ∈ 𝑅$×&  with the same 
linguistic content as 𝑋, we replace 𝐴* with an exemplar set 
𝐴E ∈ 𝑅$×+from the target speaker, and recombine with 𝐻: 

𝑌 = 𝐴E𝐻 (3) 

As a result, 𝑌	will have the identity of the target speaker 
and the linguistic content of the source speaker. 

3.1. Joint NMF for voice conversion 

Using high-resolution features (e.g., STFT spectra) allows 
NMF to achieve high acoustic quality and naturalness. 
Further improvements can also be achieved if exemplars 
contain multiple (consecutive) frames to capture contextual 
information. Unfortunately, using multi-frame and high-

resolution features makes NMF computationally expensive. 
To address this issue, Wu et al. [5] have recently proposed 
to combine single-frame high-res features with multi-frame 
low-res features. The approach consists of factorizing high-
res (𝑋GH) and low-res (𝑋1H) features as: 

𝑋GH ≈ 𝐴*GH𝐻	;						𝑋1H ≈ 𝐴*1H𝐻 (4) 

by minimizing the joint cost function: 

𝛼𝑑01 𝑋GH, 𝐴*GH𝐻 + (1 − 𝛼)𝑑01 𝑋1H, 𝐴*1H𝐻 + 𝜆 𝐻 5	 (5) 

where 𝛼  controls the contribution of low-res and high-res 
features. Once 𝐻  is found (see [5] for details), the target 
utterance is then reconstructed using only high-res features: 

𝑌GH = 𝐴EGH𝐻 (6) 

In our study, we use the 513-dim STRAIGHT 
spectrogram [17] as high-res features, and 23 Mel-scale 
filter bank energies as low-res features.  

4. EXEMPLAR SELECTION 

Compiling an exemplar set starts by time-aligning source 
and target utterances in a training corpus. Once aligned, a 
subset of exemplar pairs is randomly selected to form 
matrices {(𝐴*GH, 𝐴*1H), 𝐴EGH, 𝐴E1H }. To ensure good coverage 
of the acoustic space, this subset contains a large number of 
exemplars (1,000s to 10,000s) [3-6]. However, a large 
exemplar subset makes computation of matrix 𝐻  very 
expensive. In addition, random selection can inadvertently 
select pairs of exemplars that are acoustically mismatched 
due to alignment errors. To address these issues, we propose 
two algorithms that select a compact subset while avoiding 
misaligned pairs. 

4.1. Forward selection 

Our first algorithm uses a forward selection procedure to 
build the exemplar subset. Starting with an empty subset, we 
select the next exemplar as the one that minimizes the joint 
reconstruction error on source and target utterances from a 
development set; this ensures that misaligned frames are 
avoided. The algorithm is summarized in Table 1. Using 
NMF to perform the decomposition becomes prohibitive. 
For this reason, during forward selection we replace NMF 
with the pseudo-inverse solution: 

𝐻* = 𝐴*M
&𝐴*M 𝐴*M

&𝑋$;				𝐻E = 𝐴EM
&𝐴EM 𝐴EM

&𝑌$ (7) 

which can be computed efficiently with orthogonal least 
squares (OLS) [18].  

4.2. Backward elimination  

Our second algorithm uses backward elimination to obtain a 
compact subset. It is based on the observation that, due to 
the NMF sparsity constraints, only a small portion of 
exemplars are active at any one time. The algorithm starts 
with a large subset of exemplars, and sequentially removes 
those exemplars with the lowest activation weights in NMF,  
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computed on a development set. The algorithm is 
summarized in Table 2. It requires selecting a parameter 𝜂 
that determines how many (as a percentage) of the least 
active exemplars are removed at each step. Large 𝜂 speed up 
the process, at the expense of eliminating exemplars that 
may become critical at a later time. Compared to the 
forward selection algorithm, backward elimination only 
requires a small number of decompositions since the size of 
the exemplar set decays geometrically. As an example, 
using 𝜂 = 20%  an initial set of 10,000 exemplars can be 
reduced to 44 exemplars (i.e., the number of phonemes in 
English) in 25 steps. For this reason, the backward 
elimination procedure can afford to use NMF during the 
decomposition step. 

5. EXPERIMENTAL SETUP 

We evaluated the two algorithms on four speakers from 
ARCTIC [19]: two males (BDL, RMS) and two females 
(SLT and CLB). For each speaker, we selected three sets of 
utterances, 10 for training, 10 for development, and 50 for 
testing. Our choice for such small training and development 
sets was motivated by applications where collecting a large 
corpus is impractical (e.g., pronunciation training [20, 21]). 
To ensure good phonetic balance, training and development 
utterances were selected using a maximum entropy criterion.  

We extracted high-res spectra with STRAIGHT [17] 
(25ms window, 5ms shift). To generate low-res features, we 
passed STRAIGHT spectra through a 23-dim Mel-scale 
filter bank. We also used STRAIGHT spectra to compute 25 
MFCCs as the representation for time-alignment, OLS, and 
initialization of the backward elimination procedure. Based 
on preliminary experiments, parameters 𝛼 (balance of low-
res and high-res features) and	𝜆 (sparsity) were set to 0.1 
and 0.7, respectively, and the maximum number of NMF 
iterations was set to 300. Our preliminary experiments 
revealed no major differences in acoustic quality when using 
multiple frames (see section 3.1); for this reason, we used a 
single HR and a single LR frame (i.e., no context). 

To perform VC, we transformed source into target 
spectra as described in section 3, and normalized the source 
𝐹R  contour to match target speaker’s range using the log-
scale mean and variance normalization method in [7]. Then, 
we used STRAIGHT to synthesize speech from the 

transformed spectra, normalized 𝐹R contour, and the source 
aperiodicity signal. We tested three VC implementations2: 

- RAND (baseline): Time-aligned training and dev sets 
using DTW, selected exemplar pairs randomly, and 
used joint NMF to obtain the weight matrix. 

- FWD: Used forward selection (Table 1) to find a 
compact exemplar set; all other settings as in RAND 

- BKW: Used backward elimination (Table 2) to find a 
compact exemplar set; other settings as in RAND. 

We evaluated each system on four VC tasks: BDL to RMS 
(m-m), CLB to SLT (f-f), BDL to SLT (m-f), and CLB to 
RMS (f-m). For RAND, we ran each VC pair 8 times and 
report the average result. For each task, we used up to 1,000 
exemplars; preliminary experiments showed only marginal 
reductions in MCD beyond that number. 

6. RESULTS 

6.1. Objective evaluation  

We evaluated forward selection as a function of the number 
of exemplars selected. For each VC task, we used the 
optimal 𝑤  value and then computed MCDs. Fig. 2a 
summarizes results, averaged over the 4 tasks. We observe 
that FWD consistently has a lower MCD than RAND. More 
interestingly, FWD can achieve a similar MCD as RAND 
using a fraction of the exemplars. For example, RAND 
performs best when it has 1,000 exemplars (MCD: 2.29), 
whereas FWD only needs 300 exemplars to achieve a 
similar result (MCD: 2.23). 

Next, we evaluated backward elimination as a function 
of the cutoff threshold 𝜂. To obtain the initial exemplar set 
(size=1,000), we applied hierarchical clustering to time-
aligned source and target training frames, trimmed the 
dendrogram when it reached 1,000 clusters, and used the 
paired centroid frames of each cluster as the initial set. 
Average results over the four VC tasks are shown Fig. 3. 
The MCD follows a similar trend regardless of the cutoff 
threshold, and remains nearly unchanged as the number of 
exemplars is reduced from 1000 to 250. The MCD reaches a 
minimum at 100 exemplars and then increases for smaller 

                                                
2 We also tried k-means centroids of training data as exemplars, 
but do not report the results since they were uninteresting.	

Table 1. Pseudocode for forward selection Table 2. Pseudocode for backward elimination 
Inputs:	training	set	(𝑋&, 𝑌&),	development	set	 𝑋$, 𝑌$ ,	#	exemplars	𝑁	
	
𝐴* = ∅ , 𝐴E = {∅}	%	initialize	exemplar	set	
for	i	=	1:N	%	add	a	new	exemplar	to	 𝐴*, 𝐴E 	
		for	j	=	1:T	%	for	each	exemplar	candidate	in	the	training	set	 𝑥&

X , 𝑦&
X 	

𝐴*M = 𝐴* ∪ 𝑥&
X , 𝐴EM = 𝐴E ∪ 𝑦&

X 	%	add	exemplar	to	 𝐴*, 𝐴E 	
𝑋$ ≈ 𝐴*M 𝐻*;		𝑌$ ≈ 𝐴EM 𝐻E	%	decompose	development	set	
𝜖X = 𝑤 𝑋$ − 𝐴*M 𝐻* + 1 − 𝑤 (𝑌$ − 𝐴EM 𝐻E)	%	compute	error	

		𝑘 = argmin
X

𝜖X	%	select	exemplar	pair	with	lowest	error	

		𝐴* = 𝐴* ∪ 𝑥&c , 𝐴E = 𝐴E ∪ 𝑦&c 	%	add	exemplar	𝑘	to	 𝐴*, 𝐴E 	
return	𝐴*, 𝐴E 

Inputs:	initial	exemplar	set	(𝐴*, 𝐴E),	dev.	set	 𝑋$, 𝑌$ ,	#	exemplars	𝑁′	
	
while	( 𝐴* > 𝑁′)	%	(𝐴*, 𝐴E)	have	more	than	𝑁′	exemplars	

𝑋$ ≈ 𝐴*𝐻*,	𝑌$ ≈ 𝐴E𝐻E	%	decompose	development	set	
%	compute	avg.	activation	of	each	exemplar	(i.e.,	rows	in	𝐻*, 𝐻E):	
𝐻* = mean(𝐻*),	𝐻E = mean(𝐻E)	
%	sort	exemplars	based	on	their	source	and	target	activation:		
𝑠 = 𝑠𝑜𝑟𝑡	 𝐻* + 𝐻E 		
%	remove	the	lowest	𝜂%	exemplars	(denoted	by	𝑘1hi)	
𝐴* = 𝐴* − 𝐴* 𝑘1hi ,	𝐴E = 𝐴E − 𝐴E 𝑘1hi 		

return	𝐴*, 𝐴E 
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exemplar subsets – notice that the difference between the 
highest and lowest MCD is rather small (0.03). This result 
shows that using 𝜂 =50% we can reduce the exemplar set 
four-fold (from 1000 to 250) in only 2 iterations with no 
loss in acoustic quality. A possible explanation is that only a 
small portion of exemplars contribute to the NMF activation 
weights, which allows us to use an aggressive cutoff 
threshold without removing critical exemplars.  

 
Fig. 2. (a) MCD for forward and random selection; shaded region 
indicates min-max range. (b) Average MCD for the three methods 

Lastly, we evaluated the two algorithms against random 
selection. For BKW, since all cutoff thresholds perform 
similarly, we use 𝜂 = 25%  because it gives the closest 
number of data points (i.e. 12) as the other two methods (i.e. 
11). The comparison is shown in Fig. 2b. FWD achieves the 
lowest MCD among the three methods, whereas BKW 
performs best with limited exemplar set size.  

 
Fig. 3. MCD during backward elimination for different cutoff 
thresholds (𝜂 = 5, 10, 15, 20, 25, 50%), averaged over 4 pairs  

6.2. Subjective evaluation 

In a final experiment, we evaluated the three methods 
through a set of subjective listening tests. Following prior 
studies [22], we used a 5-point mean opinion score (MOS) 
to rate acoustic quality, and a voice similarity score (VSS) 
ranging from -7 (definitely different speakers) to +7 
(definitely same speaker) to rate speaker identity. For the 
audio quality test, we used 1000, 200, and 204 exemplars 
for RAND, FWD, and BKW, respectively, since they had 
similar MCDs. Sixteen participants rated 120 VC utterances: 
40 utts per algorithm, 10 utts per speaker pair; all utts were 
randomly ordered. We found no significant differences 
between the three methods –see Fig. 4a; thus, the two 
proposed algorithms can achieve the same acoustic quality 
as random selection with 20% of the exemplars. 

For the speaker identity test, 14 participants rated 120 
utterance pairs: 40 pairs (20 VC-source and 20 VC-target 
pairs) per system, 10 pairs per speaker pair. For each utt 
pair, participants were asked to first decide whether or not 

the two utts were from the same speaker, and then rate their 
confidence level on a 7-point scale. Utt pairs were presented 
in a random order. Source and target utts were resynthesized 
using NMF to avoid bias on speech quality. Following [22], 
responses were compiled into a VSS score. As shown in Fig. 
4b, the three methods have similar VSS. Participants were 
“quite a bit” confident that VC and source utts were from 
different speakers (VSS≈4) but not sure if VC and target 
utts were from the same speaker (VSS≈ 0.5). The low 
similarity between VC and target is caused by cross-gender 
conversions, which are rated as VSS=−4.5 (“different 
speakers”), whereas same-gender conversions are rated as 
VSS=5.3 (“same speaker”). One possible explanation is that 
prosody carries speaker identity information, and prosody 
differences are more distinguishable across genders. As a 
result, cross-gender VC utts have similar prosody as the 
source speaker, which participants use –in addition to 
spectral cues—to make their decisions. Nevertheless, the 
three systems perform similarly, with the two proposed 
methods using 5 times fewer exemplars than the baseline. 

 
Fig. 4. (a) Speech quality results with 95% confidence interval. (b) 
Speaker identity results (vc-source: VSS between voice conversion 
and source speaker) 

7. CONCLUSION AND FUTURE WORK 

Exemplar-based VC methods often require a large set of 
exemplars to achieve good performance. In this paper, we 
have proposed two complementary strategies that can be 
used to construct compact exemplar sets. The first strategy 
(forward selection) builds a compact set by selecting 
exemplar pairs that reduce the joint reconstruction error of 
source and target utterances. The second strategy (backward 
elimination) excludes exemplars that contribute the least to 
the factorization. Objective and subjective measures show 
that both strategies can significantly reduce the number of 
exemplars (from 1000 to 200, in our experiments), without 
sacrificing VC performance. Using a contemporary PC, both 
algorithms take ~10-15 min to identify 200 exemplars. 

For computational reasons, the forward procedure uses 
least-squares as a proxy of NMF, yet achieves lower NMF 
reconstruction error than the backward procedure, which 
does use NMF to exclude frames. Future work will examine 
ways in which both procedures can be combined, e.g. using 
exemplars generated by forward selection as the initial set 
for backward elimination. An additional direction of future 
work is to improve the computational efficiency of the 
forward selection algorithm, e.g., using heuristic rules to 
reduce the search space or the alternating direction method 
of multipliers [9]. 
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