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Abstract
• Objective: develop more compact exemplar set for voice

conversion (VC)

Review: exemplar-based VC methods
• Conventional NMF: first, represent utterance 𝑋 as a 

weighted sum of exemplars in set 𝐴𝑋

𝑋 = 𝐴𝑋𝐻𝑋

Then, to generate speech for target speaker 𝑌, combine 
source weights 𝐻𝑋 with target exemplars 𝐴𝑌

𝑌 = 𝐴𝑌𝐻𝑋

• Joint NMF: to improve performance [1], one could 
combine single-frame, high-res (HR) features with multi-
frame, low-res (LR) features :

𝛼𝑑𝐾𝐿 𝑋𝐻𝑅 , 𝐴𝑋
𝐻𝑅𝐻 + 1 − 𝛼 𝑑𝐾𝐿 𝑋𝐿𝑅 , 𝐴𝑋

𝐿𝑅𝐻 + 𝜆 𝐻 1

Forward selection (FWD)

Starting with an empty subset, we select the next exemplar as 
the one that minimizes the joint reconstruction error on source 
and target utterances from a development set

Backward elimination (BKW)

The algorithm starts with a large subset of exemplars and 
sequentially removes the exemplars with the lowest activation 
weights in NMF, computed on a development set 

Conclusions
• Keyframe estimation: the modified SABR algorithm is 

capable of finding almost all keyframes with an average 
error of 15 ms.

• EMA:  Gestural scores produced EMA trajectories weakly 
correlated with the source utterance.

• Future work:
1) Incorporating keyframes into a sparse speech 
synthesis method could be a way to improve synthesis 
quality with smaller models.
2) Improve EMA accuracy using a data-driven shape 
optimization method.

Objective evaluation
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• Motivation: 

 Conventional exemplar-
based VC requires large 
exemplar set to ensure good 
coverage

 Factorization is time 
consuming

• Solution: use forward selection and/or backward elimination
to reduce the size of an exemplar set
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Experimental setup
• Dataset: four speakers from ARCTIC: two males (BDL and

RMS) and two females (SLT and CLB). For each speaker: 10
utterances for training, 10 for development, and 50 for
testing. All sets are phonetically balanced

• Features: 513-dim high-res spectra; 23-dim low-res Mel-scale
filter bank energies; 25-dim MFCCs

• VC implementations: RAND (baseline, uses random exemplars),
FWD (uses forward selection to get exemplars), BKW (uses
backward elimination to get exemplars)

• VC tasks:

 BDL to RMS (male to male)

 CLB to SLT (female to female)

 BDL to SLT (male to female)

 CLB to RMS (female to male)

Overview: exemplar selection methods
• Compiling an exemplar set starts by time-aligning source 

and target utterances in a training corpus

• Conventional approach randomly picks large exemplar sets

• We propose to use sequential selection methods to 
highlight the most important exemplar candidate pairs

Discussion
• FWD builds a compact exemplar set by reducing the joint 

reconstruction error of source and target utterances

• BKW excludes exemplars that contribute the least to the 
factorization

• Both strategies can significantly reduce the number of 
exemplars, without sacrificing VC performance

• Future work: combine both strategies; improve the 
computational efficiency of FWD
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Subjective evaluation
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𝜂:

Fig. 3

Fig. 2

Fig. 1

Fig. 1: MCD of FWD vs. the 
number of exemplars 
selected. Shaded region 
indicates min-max range

Fig. 2: MCD of BKW vs. the 
cutoff threshold 𝜂. E.g., if 
𝜂 = 5%, we remove 
exemplars that are ranked 
among the lowest 5% in 
each iteration 

Fig. 3: Comparison against 
random selection. RAND 
was averaged over 8 runs, 
BKW used 𝜂 = 25%

Fig. 4: Mean opinion score (MOS) 
measures acoustic quality. We used 1000, 
200, and 204 exemplars for RAND, FWD, 
and BKW, respectively

Fig. 5: Voice similarity score [2] measures
speaker identity. Same-gender VC VSS=5.3
(“same speaker”); cross-gender VC     −4.5
(“d ff          k   ”)
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