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Using Phonetic Posteriorgram Based Frame Pairing
for Segmental Accent Conversion
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Abstract— Accent conversion (AC) aims to transform non-
native utterances to sound as if the speaker had a native accent.
This can be achieved by mapping source speech spectra from
a native speaker into the acoustic space of the target non-
native speaker. In prior work, we proposed an AC approach
that matches frames between the two speakers based on their
acoustic similarity after compensating for differences in vocal
tract length. In this paper, we propose a new approach that
matches frames between the two speakers based on their phonetic
(rather than acoustic) similarity. Namely, we map frames from
the two speakers into a phonetic posteriorgram using speaker-
independent acoustic models trained on native speech. We thor-
oughly evaluate the approach on a speech corpus containing
multiple native and non-native speakers. The proposed algorithm
outperforms the prior approach, improving ratings of acoustic
quality (22% increase in mean opinion score) and native accent
(69% preference) while retaining the voice quality of the non-
native speaker. Further, we show that the approach can be used
in the reverse conversion direction, i.e., generating speech with a
native speaker’s voice quality and a non-native accent. Finally, we
show that this approach can be applied to non-parallel training
data, achieving the same accent conversion performance.

Index Terms—accent conversion, voice conversion, acoustic
model, posteriorgram.

I. INTRODUCTION

LEARNERS who acquire a second language (L2) after
a “critical period” [1] usually speak with a non-native

accent. Having a non-native accent can often reduce the
speaker’s intelligibility [2] and may also lead to discriminatory
attitudes [3], [4]. Therefore, non-native speakers have much
to gain by improving their pronunciation. Several studies [5],
[6] have shown that having a suitable native (L1) speaker
to imitate – a so-called “golden speaker” with similar voice
characteristics as the learner but with a native accent, can be
beneficial in pronunciation training. Based on these findings,
Felps et al. [7] suggested that such a “golden speaker” could be
created by resynthesizing the non-native speaker’s own voice
with a native accent borrowed from a native reference speaker.

Traditional voice-conversion (VC) methods [8]–[11] cannot
be used for this purpose since VC cannot decouple the
speaker’s voice quality from her or his accent, i.e., VC assumes
that accent is part of the speaker’s identity. In this work, we
distinguish two concepts: voice quality, which focuses on the
physical characteristics of the speaker’s voice (e.g., vocal tract
and glottal configuration, pitch range), and speaker identity, a
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combination of voice quality and other speaker characteristics
(e.g., accent, speaking rate, intonation, word choice).

To address the accent-and-voice-quality entanglement issue
of traditional VC methods, Aryal and Gutierrez-Osuna [12]
proposed a modified VC method where source frames (i.e.,
from the native reference speaker) and target frames (i.e., from
the non-native speaker) were paired based on their acoustic
similarity. In a first step, the authors applied vocal-tract length
normalization (VTLN) to the source speech, so it matched
the target speaker’s vocal-tract length. Then, they paired each
frame in the source corpus with the closest frame in the target
corpus, and vice versa. Though VTLN did improve frame
pairing compared to time alignment (i.e., the conventional ap-
proach in VC), vocal-tract length is just one of the potentially
many differences between speakers, and it is too coarse to
account for differences in pronunciation.

To address this issue, we present an approach that matches
source and target frames based on their phonetic content.
Leveraging advances in acoustic modeling [13], we extract
phonetic information from phonetic posteriorgrams (PPGs)
[14]. Namely, we compute the posteriorgram for each source
and target speech frame through a speaker-independent acous-
tic model trained on a large corpus of native speech. Then, we
use the symmetric Kullback-Leibler (KL) divergence [15] in
posteriorgram space to match source and target frames. The
result is a set of source-target frames that are paired based
on their phonetic similarity, with which we train a Gaussian
Mixture Model (GMM) to model the joint distribution of
source and target Mel-Cepstral Coefficients (MCEPs). In a
final step, we map source MCEPs into target MCEPs using
maximum likelihood estimation of spectral parameter trajec-
tories considering the global variance [8] of the target speaker.
Our implementation is based on a conventional GMM spectral
mapping method to ensure a fair comparison with the prior
study [12], but our proposed frame matching method can be
combined with any spectral mapping methods (e.g., neural
networks, frequency warping) that take frame pairs as input.

Our approach differs from prior works on accent conversion,
which modify speech features that carry accent information,
such as prosody, formants, spectral envelopes, or articulatory
gestures [7], [16]–[18]. Instead, we use a VC technique to cap-
ture the voice quality of the (target) non-native speaker while
preserving the (source) native speaker’s pronunciation charac-
teristics – both segmental and prosodic. Unlike VC methods,
however, we avoid the issue of time aligning source and
target utterances, which is problematic when the target speaker
is non-native. Our approach is related to that of Xie et al.
[19], who used speaker-adaptive acoustic models to generate
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posteriorgrams for VC. Their method groups all target speaker
training data into phonetic clusters in the posteriorgram space
using symmetric KL divergence and K-means clustering.
Then, each frame of the source speaker’s corpus is mapped
to the centroid of the closest target phonetic cluster. The
final converted speech is generated from those closest cluster
centroids using the maximum probability trajectory generation
algorithm. In contrast with their frame clustering approach, we
use PPGs to produce frame pairs between source and target
speakers, and then we train a GMM using those frame pairs.
A second major difference with their approach is that we use
speaker-independent acoustic models trained on native speech
to ensure that the PPGs only reflect native pronunciations,
whereas their approach uses speaker-adaptive training, which
would introduce non-native pronunciations into the acoustic
models. Initial findings from this work were presented at the
International Conference on Acoustics, Speech, and Signal
Processing (ICASSP) in 2018 [20]. That earlier conference
paper presented preliminary listening test results that verified
the effectiveness of the PPG-based frame-matching method.
The present manuscript describes our method in detail and
significantly expands the perceptual studies and data analyses,
including an experimental comparison of the proposed method
on parallel and non-parallel data.

The manuscript is organized as follows. Section II re-
views prior work on accent conversion in the acoustic and
articulatory domains, and discusses the connection between
accent conversion and voice conversion. Section III describes
the experimental methods used in the study, including the
phonetic posteriorgrams, the proposed frame-pairing method
for accent conversion, as well as the baseline systems we used
for comparison. Section IV describes the experimental setup
used for the study, including the speech corpus we used to train
the acoustic model, and the native/non-native speech corpus
we used for accent conversion. Section V presents results on
three different experiments we used to evaluate various aspects
of the algorithm. The paper concludes with a discussion of our
findings and directions for future work.

II. LITERATURE REVIEW

A. Algorithms for accent conversion

Foreign and non-native accents occur when speech deviates
from the expected acoustic (e.g., formants) and prosodic
(e.g., intonation, duration, and rate) norms of a language
[7]. Therefore, prior work has focused on modifying certain
speech characteristics to alter the perceived accent. In early
work, Yan et al. [21] used a voice-morphing software to
change the trajectories of formants, pitch, and duration to
convert between three different English dialects (British, Aus-
tralian, and General American English). The authors found
that prosodic modifications produced noticeable differences
on perceived accent, although not as significant as those
produced by modifying formant trajectories. In the approach
of Felps et al. [7], the spectral envelope of the non-native
speech was replaced with that of the native speaker’s, which
had been normalized to the non-native speaker’s vocal tract
length with a piecewise linear warping function. Their results

showed that the segmental correction was able to significantly
reduce the foreign accentedness of the modified utterances.
More recently, Jügler et al. [22] used PSOLA to correct
the prosody of non-native German speech spoken by native
French speakers. Prosodic (duration and pitch) corrections
were performed at the syllable level, and the results showed
a moderate but significant reduction in accentedness of the
corrected speech.

A couple of studies also tried to blend native and non-native
spectra to control the accent. Huckvale and Yanagisawa [17]
blended the spectral envelope of non-native Japanese speech
produced by an English Text-To-Speech (TTS) with its native
counterpart through voice morphing to reduce the accent.
Aryal et al. [18] decomposed the cepstrum into spectral slope
and spectral detail, and then generated accent conversions by
combining the spectral slope of the non-native speaker with
a morph of the spectral detail of the native speaker. Though
these spectra-blending methods can reduce non-native accents,
they also tend to produce syntheses that are perceived as a
“third speaker,” one who is different from either the source
(native) or target (non-native) speaker. To tackle this problem,
Aryal and Gutierrez-Osuna [12] adapted VC techniques to
perform accent conversion. The authors used vocal-tract-length
normalization (VTLN) before pairing acoustic frames between
source (native) and target (non-native) speaker, then built a
GMM using those frame pairs to perform VC. This method
was able to reduce non-native accent significantly, while
retaining the non-native speaker’s voice quality; however, it
required a relatively large set of parallel recordings from the
two speakers, and VTLN only accounted for a subset of the
speaker characteristics.

An alternative to using acoustic methods is to operate in the
articulatory domain. Along these lines, Felps et al. [16] used
an articulatory synthesizer based on unit-selection to replace
mispronounced non-native diphones with those from the non-
native corpus that matched the articulatory configuration of
a reference utterance from a native speaker. Later, Aryal and
Gutierrez-Osuna used GMMs [23] and DNNs [24] to build
an articulatory synthesizer (i.e., a mapping from articulatory
gestures into acoustics) for the non-native speaker, then drove
the GMM/DNN with articulatory gestures from a native
speaker. Methods based on articulatory data generate syntheses
that sound more like the non-native (target) speaker than
acoustic methods, since they effectively decouple linguistic
information (e.g., articulatory gestures from a native [source]
speaker) from voice quality (captured by the articulatory-
to-acoustic synthesizer of the non-native speaker). However,
articulatory methods are expensive and require specialized
equipment to collect articulatory data, so they are impractical
for pronunciation training.

B. Connection between accent and voice conversion

Accent conversion is closely related to the problem of
voice conversion [25]. Voice conversion transforms a source
speaker’s speech into that of a (known) target speaker. The
conversion aims to match the voice characteristics of the target
speaker, which may include vocal tract configuration, glottal
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Fig. 1. PPG for the word “air,” whose phonetic transcription in ARPABET
is “EH R.” For visualization purposes, we used a subset of the ARPABET
phoneme set and omitted phonemes that had small values.

characteristics, pitch range, pronunciation, and speaking rate.
Ideally, the only information retained from the source speech is
its linguistic content, i.e., the words that were uttered. Popular
methods for voice conversion include joint-density GMMs [8],
frequency warping [26], [27], DNNs [28], [29], and sparse
coding [11], [30]–[32]. Accent conversion modifies speech at
a finer level of granularity, and seeks to combine the linguistic
content and pronunciation of the source speaker with the voice
quality of the target speaker. Therefore, accent conversion is a
more challenging problem than voice conversion in the sense
that, first, there is no ground truth for the output voice, and
second, accent conversion needs to split the speech into voice
quality (converted) and accent (preserved), whereas voice
conversion jointly converts both.

III. METHODS

A. Phonetic Posteriorgrams

At its core, our proposed method relies on Phonetic Poste-
riorgrams (PPGs) to measure the similarity of speech frames
across speakers. A phonetic posteriorgram is computed by
segmenting speech into frames and computing the posterior
probability that each frame belongs to a set of pre-defined
phonetic units. As an example, Fig. 1 shows the PPG of the
spoken word “air.” In practice, it is advisable to include context
when computing the PPG by concatenating each speech frame
with its neighboring right and left frames. Moreover, phoneme
labels are too coarse to describe the variety of speech sounds.
Therefore, the dimensions in a phonetic posteriorgram are
often associated with triphones, as we will see next.

Generally, the phonetic posteriorgram is computed from
the acoustic model in an automatic speech recognizer (ASR).
The acoustic model in ASR acts as a sequential classifier:
given an input acoustic feature vector, the acoustic model
assigns how likely it is that the vector belongs to each of
a set of states/senones. In recent years, acoustic models based
on DNNs have yielded state-of-the-art speech recognition
accuracy [13]. The most advanced ASR systems can achieve
Word Error Rates that are comparable to or better than expert
human transcribers on specific tasks [33].
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Fig. 2. P -norm deep neural network structure for acoustic modeling.

In this work, we compute phonetic posteriorgrams using
a p-norm DNN [34] as the acoustic model. The input layer
accepts a feature frame accompanied by its left and right
neighbors; then the input is de-correlated by a fixed linear
transformation [35]. The de-correlated features are then passed
through N hidden layers, each employing the p-norm non-
linearity y = ‖x‖p = (

∑
i |xi|p)

1
p , where y is one output

dimension of a hidden layer and x represents a group of
hidden neurons of that layer. Therefore, the number of output
dimensions of each hidden layer is smaller than the number
of hidden neurons. The output of the p-norm layer is then
processed by a normalization layer to limit its standard de-
viation to one [34]. The output of the final hidden layer is
fed into a softmax layer that produces more output nodes
than the desired number of senones using a technique called
“mixing-up” [34]. “Mixing-up” operates as follows. About
halfway through training, the dimension of the softmax layer is
increased by letting each output senone’s probability be a sum
over potentially multiple “mixture components.” The mixture
components are distributed using a power rule, proportional
to the senone class priors. The neural network then “group-
sums” the output of the softmax layer according to the group
assignment defined in the “mixing-up” step, resulting in the
final output nodes that correspond to individual senones. Fig. 2
shows the overall structure of the p-norm deep neural network
that we use in this work.

During training, inputs to the p-norm DNN consist of
stacked MFCC frames X, whereas target outputs Y are senone
labels obtained from force-alignment using an existing GMM-
HMM speech recognizer. The training objective is the sum
(across all frames of training data) of the log-probability of Y
given X:

∑
i log p(Yi|Xi). After the DNN is fine-tuned using

Stochastic Gradient Descent [36], we compute the posterior
probability of observing senone l given the speech frame x by
doing a complete forward propagation,

p(l|x) =
∑
g∈G

expx
′

g∑
k expx

′
k

, (1)

where x
′

k is the output of the hidden layer that precedes the
softmax layer, and G is the set of softmax outputs that are
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Fig. 3. L1: native, L2: non-native. (a) AC-PPG: proposed AC algorithm that
uses phonetic similarity. (b) AC-SIM: Baseline 1 that uses acoustic similarity
through VTLN to pair frames [12]. (c) AC-DTW: Baseline 2; native and
non-native frames are time-aligned following their ordering in the data.

grouped into senone l during the “mixing-up” procedure. A
PPG frame of x is constructed by forming a vector from all
possible values of p(l|x), see eq. (2).

B. Frame pairing

Conventional voice conversion methods use time alignment
to pair frames from source and target utterances. As such, a
VC model trained from time-aligned frame pairs will retain the
non-native speaker’s accent. Instead, to perform accent con-
version, the pairing must be based on the phonetic similarity
between source and target frames. In this way, each native
speech frame is associated with its most similar non-native
counterpart in terms of pronunciation. If we train a spectral
conversion model between these frame pairs, the pronunciation
from the native speech data will be preserved and the spectral
envelope of the native speaker will be modified to match the
non-native speaker’s voice quality.

1) Frame pairing based on phonetic similarity (AC-PPG):
We use PPGs to pair frames between the native and the
non-native speaker. Our rationale is straightforward: if an
ASR trained on native speech determines that a non-native
speech segment y is close to the native speech production
of a particular phoneme (or triphone, in our case), then it is
reasonable to pair y with a native speech segment x with the
same phonetic label; see Fig. 3 (a). Specifically, our approach
works as follows. In a first step, we compute PPG frames for
speech frames from the two speakers,

Lxi = [p(l1|xi), p(l2|xi), . . . , p(lV |xi)], (2)

where xi is the acoustic feature vector of the i-th speech frame;
V = {l1, l2, . . . , lV } is the predefined senone set; p(lj |xi) is
the conditional probability that the speech frame belongs to
senone lj given xi;

∑
j p(lj |xi) = 1.

Given posterior feature vectors Lxi and Lxj , we calculate
their distance using the symmetric KL divergence,

D(Lxi ,Lxj ) = (Lxi − Lxj ) · (logLxi − logLxj ). (3)

The symmetric KL divergence [15] is commonly used to
compute the similarity between distributions, and here, each
frame of the PPG functions like a distribution. For each source
(i.e., native) frame xi we find its closest target (i.e., non-native)
frame y∗i ,

y∗i = arg min
∀y

D(Lxi ,Ly). (4)

Likewise, for each non-native frame yi we find its closest
native frame x∗i ,

x∗i = arg min
∀x

D(Lx,Lyi). (5)

Each frame pairing process only involves two speakers –
the given native and non-native speakers. The frame pairing
does not constrain the search space. Therefore, it is possible
to pair multiple frames from one speaker with the same frame
from the other speaker. In this case, we duplicate that frame
multiple times. The resulting frame pairs are used to train a
Gaussian Mixture Model (GMM).

2) Baseline methods for frame pairing: We compared the
proposed PPG-based method against two baseline techniques
for frame pairing: the acoustic similarity method of Aryal and
Gutierrez-Osuna [12], and dynamic time warping.

Baseline 1 (AC-SIM). Following [12], we measured acoustic
similarity as the inverse of the L2-norm between native and
non-native speaker frames, after normalizing the native speaker
to match the vocal tract length of the non-native speaker; see
Fig. 3 (b).

In a first step, we learn a VTLN transform to reduce phys-
iological differences in vocal tract between the two speakers.
For this purpose, we time-align parallel training utterances of
the two speakers, each utterance represented as a sequence of
MFCCs. Following Panchapagesan and Alwan [37], we then
learn a linear transform between the MFCCs of both speakers
using ridge regression:

T ∗ = arg min
T

‖x− T y‖2 + λ‖T‖2, (6)

where x and y are vectors of MFCCs from the native and non-
native speakers, respectively, and T ∗ is the VTLN transform.
Next, for each native vector xi we find its closest non-native
vector y∗j as:

y∗j = arg min
∀y

‖xi − T ∗y‖2. (7)
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We repeat the process for each non-native vector yi to find
its closest match x∗j :

x∗j = arg min
∀x

‖x− T ∗yi‖2. (8)

The above process results in a lookup table where each
native and non-native frame in the database is paired with the
closest one from the other speaker.

Baseline 2 (AC-DTW). As our second baseline method, we
use Dynamic Time Warping (DTW) [38] to time-align native
and non-native frames, as illustrated in Fig. 3 (c).

We note that baselines 1 and 2 need parallel data for
training, whereas the proposed method can operate on non-
parallel data, as we shall see in Section V-C.

C. Spectral conversion

To ensure a fair comparison between the three frame-pairing
methods, we use a common spectral conversion technique to
map a native source speaker’s spectral features to match a
non-native target speaker’s voice quality. Following Toda et al.
[8], we use a GMM to model the joint distribution of source
and target frame pairs, and then use maximum likelihood
parameter generation (MLPG) with global variance (GV) [39]
to generate the converted speech for a given source utterance.
Specifically, we use 2D-dimensional acoustic features, Xt =
[x>t ,∆x

>
t ]> from the source speaker, and Yt = [y>t ,∆y

>
t ]>

from the target speaker, consisting of D-dimensional static and
dynamic features, where (·)> denotes the transpose. Given the
paired source and target features, we train a GMM to model
the joint probability density p(X,Y |θ) where θ denotes model
parameters, estimated using Expectation-Maximization (EM):

θ = EM(arg max
θ

p(X,Y |θ)). (9)

When converting source static and dynamic feature vectors
X = [X>1 , X

>
2 , . . . , X

>
T ]> to the target static feature vectors

y = [y>1 , y
>
2 , . . . , y

>
T ]> – after the GMM is trained, we

maximize the function below with respect to y,

ŷ = arg max
y

log (p(Y |X, θ)ωp(ν(y)|θν)), Y = Wy, (10)

where p(Y |X, θ) denotes the conditional probability density
function (PDF) on the target static and dynamic feature
vectors, and p(ν(y)|θν) represents the likelihood of a PDF
on the global variance of the target feature vectors, which
is represented as a separate GMM (one mixture) and trained
using the EM algorithm as well. W is a matrix that appends
dynamic features to the static features, and ω adjusts the
relative importance between the two distributions and is set
as the ratio of number of dimensions between vectors ν(y)
and Y (= 1/2T ). We use a GMM instead of a DNN in this
study to focus on low-resource accent conversion scenarios –
in real pronunciation training applications, we generally have
a limited amount of data from the non-native speakers.

TABLE I
DEMOGRAPHIC INFORMATION OF THE SPEAKERS

Speaker Gender Native Language English Proficiency
BDL M English Native
CLB F English Native
RRBI M Hindi 91
TNI F Hindi 99

HKK M Korean 114
YKWK M Korean N/A

ABA M Arabic 94-101

D. Pitch scaling

Previous studies [7], [17], [21] have shown that prosody
modification is an essential part of accent conversion, and
the pitch contour contains identity-related information. Since
pitch modification is not the focus of this study, we follow the
standard procedure [8] and use the pitch trajectory from the
source (native) speaker, which captures native intonation pat-
terns, then normalize it to match the pitch range of the target
(non-native) speaker using mean and variance normalization
in the logF0 space.

IV. EXPERIMENTAL SETUP

A. DNN acoustic model for extracting PPG

To train the DNN acoustic model, we used Kaldi’s Lib-
rispeech recipe1. The model is a p-norm DNN (p = 2), as
introduced in the method section, with five hidden layers.
We extracted 13-dim MFCC vectors with a 7-frame context,
passed the concatenated 91-dim (13×7) MFCCs through a
Linear Discriminant Analysis (LDA) to generate a 40-dim
input feature vector, then concatenated nine frames of such
40-dim LDA features as the final input to the DNN. The 360-
dim (40×9) input features were de-correlated using a fixed
linear transform. All hidden layers had 5,000 hidden neurons
and output 500 activations because each p-norm non-linearity
was computed over ten hidden neurons. Every hidden layer
was fully-connected with the previous layer. Right after the last
hidden layer was a softmax layer of 14,000 nodes; those nodes
were then “group-summed” to produce the final output across
senones (5,816 dimensions, which were obtained from state-
tying on a phonetic decision tree built from the transcripts of
the training data; see [40] for more details on how the decision
tree was constructed). The DNN acoustic model was trained
on Librispeech’s [41] training set, a speech recognition corpus
that contains 960 hours of native English speech, the majority
being American English. In the following experiments, the
Librispeech corpus was used solely for building the acoustic
model.

B. Speech corpus for accent conversion

For the native speech synthesis corpus, we used two speak-
ers from the CMU ARCTIC dataset [42]: BDL and CLB.
Those recordings have a sampling rate of 16 KHz. For the
non-native (L2) English speech synthesis corpus, we used
five non-native speakers from the L2-ARCTIC corpus2 [43]:

1https://github.com/kaldi-asr/kaldi/tree/master/egs/librispeech
2https://psi.engr.tamu.edu/l2-arctic-corpus/
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two native Hindi speakers, two native Korean speakers; and
one native Arabic speaker. Each non-native speaker produced
the full ARCTIC dataset (∼1100 utterances; around one hour
of speech). The speech was recorded in a quiet room at
44.1 KHz. For the following experiments, we down-sampled
all the non-native speech data to 16 KHz using sox3. The
speaker demographic information is summarized in Table I.
For the non-native speakers, their English proficiency level
was measured in their TOEFL iBT scores4 [46].

C. System configuration

In what follows, we will refer to the proposed frame-
pairing algorithm, baseline 1 (acoustic similarity), and baseline
2 (dynamic time warping) as AC-PPG, AC-SIM, and AC-
DTW, respectively.

We used the TANDEM-STRAIGHT vocoder5 [49] to de-
compose speech into aperiodicity (AP), F0, and a 513-dim
spectral envelope. Then, we computed 25-dim MFCCs6 from
the spectral envelopes to learn the VTLN transform and pair
frames using acoustic similarity (AC-SIM); see section III-B2.
AC-DTW also used those MFCCs (excluding MFCC0) to time-
align a source speaker to a target speaker. AC-PPG used the
5816-dim PPGs extracted by the acoustic model to perform
frame pairing.

We also computed 25-dim MCEPs from the spectral en-
velopes as the acoustic feature (excluding MCEP0 since it
is energy) to train the spectral conversion models (GMMs)
and convert speech from the native speaker to the non-native
speaker. MCEPs from the two speakers were frame paired
using the three methods (AC-PPG, AC-SIM, AC-DTW) before
being fed to the GMMs. Following Aryal and Gutierrez-
Osuna [12], all GMMs had 128 mixture components with
diagonal covariance matrices. Input features to the GMM
include delta features, and therefore the joint feature vectors
had 96 dimensions. Once we converted the native speaker’s

3http://sox.sourceforge.net/Main/HomePage
4Speaker ABA only reported his IELTS [44] score (7.0). We converted it

to a TOEFL iBT score following [45].
5We used the NDF F0 extractor [47] instead of the default F0 extractor

that comes with TANDEM-STRAIGHT, because based on our experience and
a prior study [48], the NDF F0 extractor is more robust than the TANDEM-
STRAIGHT default.

6We only used those MFCCs to generate the frame pairing lookup tables
in AC-SIM and AC-DTW and discarded in other tasks.

MCEPs to the non-native speaker’s space, we reconstructed the
spectrogram from the converted MCEPs (MCEP0 being copied
from the native speaker), and combined it with the native
speaker’s AP and normalized F0 to synthesize speech using
the TANDEM-STRAIGHT vocoder. The conversion pipeline
is illustrated in Fig. 4.

All experiments were conducted on a desktop running
Windows 10 with an Intel Core i7-7700K CPU@4.2GHz,
16GB of memory, and an NVidia GTX 1070 GPU. Most of the
algorithms were implemented and run on Matlab v9.3, except
for the acoustic model and PPGs, which were computed using
Kaldi on Ubuntu 16.04.

V. RESULTS

We conducted three sets of perceptual listening studies to
evaluate different properties of the proposed frame-pairing
algorithm. In the first experiment, we compared the approach
against the two baseline systems by its ability to reduce
perceived accents while matching the voice quality of the
non-native speakers. In the second experiment, we evaluated
whether the approach could also be used for the reverse
purpose, i.e., to impart a non-native accent to a native speaker’s
voice. In the third and final experiment, we evaluated the
approach to perform accent conversion using non-parallel
speech corpora.

We recruited anonymous human participants from Ama-
zon’s Mechanical Turk platform7 for our listening tests. Fol-
lowing Buchholz and Latorre [50], all listening tests included
calibration trials designed to be easy to judge, and we used
the participants’ responses on those calibration trials to de-
tect cheating behaviors. We excluded data from participants
whose responses were below chance level on those calibra-
tion questions. All participants’ calibration responses were
excluded from the final analyses. In addition, and following
[16], all human subjects passed a screening test that con-
sisted of identifying various American English accents. We
compensated participants for their time at an hourly rate of
eight USD. In all experiments, the reference native and non-
native English speech were resynthesized from their MCEPs
using TANDEM-STRAIGHT to keep their acoustic quality
comparable with the converted speech, which went through the
same vocoder compression. When selecting testing samples,

7https://www.mturk.com/
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Fig. 5. Mean Opinion Scores for the proposed method (AC-PPG) and the two
baseline methods (AC-SIM, AC-DTW); the error bars show 95% confidence
intervals.

we always randomly draw from the available pools, i.e., we
did not cherry-pick the audio clips. All test trials were ran-
domly presented. For any listening tests that required pairwise
comparisons, the presentation order within an utterance pair
was counterbalanced. Unless otherwise noted, we used paired-
sample t-tests for the analyses.

A. Experiment 1: Comparing AC-PPG against baselines

In this experiment, we considered five native to non-native
speaker pairings for accent conversion: BDL to RRBI, BDL to
HKK, BDL to YKWK, BDL to ABA, and CLB to TNI. For
each speaker pair, we used 100 parallel utterances for training
and 50 utterances for testing; there was no overlap between
the two sets. We performed accent conversion on all 50 test
utterances using models trained on each of the three frame-
pairing algorithms, i.e., AC-PPG, AC-SIM, and AC-DTW.

Acoustic quality. We used a standard five-point (1-Bad,
2-Poor, 3-Fair, 4-Good, 5-Excellent) Mean Opinion Score
(MOS) to rate the acoustic quality of the synthesized speech.
Thirty listeners rated 150 test samples: 50 per system, 10
utterances per conversion direction. Results are shown in Fig.
5. The proposed method (AC-PPG) received a MOS rating of
2.99, which was significantly higher than either baseline: AC-
SIM (2.45 MOS, 22% relative improvement; t(29) = 15.61,
p� 0.001; one-tail) and AC-DTW (2.55 MOS, 17% relative
improvement; t(29) = 12.04, p � 0.001; one-tail). These
results suggest that the proposed algorithm can boost the
acoustic quality of the converted speech using exactly the same
training data without even having to modify the GMM training
and spectral conversion methods.

Voice quality. Following our prior work [32], we used
a voice similarity score (VSS) ranging from -7 (definitely
different speakers) to +7 (definitely same speaker) to assess
the speaker’s voice quality. Twenty-six participants rated 150
utterance pairs: 50 pairs per system (25 AC-L1 and 25 AC-
L2 pairs, each pair contained one AC and one L1 [native]/L2
[non-native] utterance), and ten pairs per conversion direction.

AC-SIM AC-DTW AC-PPG

Fig. 6. Voice quality results; AC-L1: VSS between AC and native (L1)
speaker; AC-L2: VSS between AC and non-native (L2) speaker; the middle
bars in the boxes show the median values and diamond markers (�) show the
mean values, the plus signs (+) indicate outliers, those notations apply to all
boxplots in this paper.

Following Felps et al. [7], we played utterances in reverse to
prevent the accent from interfering with the perception of voice
quality. In each trial, listeners first answered whether both
utterances were produced by the same speaker (+1) or different
speakers (-1), and then rated their confidence level on a 7-point
scale (1-Not at all confident, 7-Extremely confident). The VSS
was then compiled by multiplying the response from the first
question with the confidence rating. Results are summarized
in Fig. 6. Overall, the three systems have similar VSS, and
AC-L1 pairs received an average VSS between -3.29 to -
3.62, indicating that listeners were “confident” that the AC
utterances had a different voice quality from those of the native
speaker. Likewise, AC-L2 pairs received an average VSS
between 3.50 to 4.07, indicating that listeners were “confident”
that the same speaker produced the AC and L2 utterances.
When analyzing the AC-L1 pairs, we found no significant
differences in VSS between AC-PPG and either baseline (AC-
PPG:AC-SIM t(25) = 1.13, p = 0.27; AC-PPG:AC-DTW,
t(25) = 1.95, p = 0.06; two-tail). These results suggest that
the three methods are equivalent in terms of producing speech
that is different from the native speaker. When analyzing AC-
L2 pairs, we found no significant difference between AC-PPG
and AC-SIM (t(25) = 0.42, p = 0.68, two-tail), suggesting
that the new accent conversion algorithm did not sacrifice the
speaker’s voice quality. However, AC-DTW achieved a higher
VSS (4.07) than AC-PPG (3.50); one-tail t-test (t(25) = 3.59,
p � 0.05). One possible explanation for this result is that
listeners still picked up subtle cues of non-native accent in the
AC-DTW speech samples, and used it to rate voice quality.
Because AC-DTW only performs voice conversion, it retains
some of the non-native speaker’s accent. This residual non-
native accent may have led listeners to rate samples from AC-
DTW as more similar to the non-native speech, even though
the recordings were played backwards. This explanation is
consistent with prior studies [51], [52] showing that, even
when speech is played backwards, native English speakers can
still detect non-native English accents.

Non-native accentedness. We used a preference test to
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Fig. 7. (a) Accent preference score with 95% confidence interval. (b)
Cumulative confidence score for accentedness with 95% confidence interval.

determine if AC-PPG does indeed make the converted speech
sound more native-like. Thirty native English speakers rated
150 utterance pairs: 50 pairs for each comparison: AC-PPG
vs. AC-SIM, AC-PPG vs. AC-DTW, and AC-PPG vs. L2 (i.e.,
original utterances from the non-native speaker), ten pairs of
utterances per conversion direction, each utterance pair was
from the same sentence. Listeners were asked to choose the
most native-like (least foreign) utterance from each pair, and
then rate their confidence level using a seven-point scale (1-
Not confident at all, 7-Very confident). Aryal and Gutierrez
[12] had previously established that AC-SIM outperforms
AC-DTW and L2 in this task; therefore, we omitted those
comparisons in this study.

In a first analysis, we sought to determine if a particular
system was preferred as “less-accented” and compared the
preference ratings from the participants. Results are summa-
rized in Fig. 7 (a). On average, listeners were very confident
(mean: 98%, STD: 3%) that the AC-PPG conversions were
more native-like than the original non-native utterances. More
importantly, listeners were positive that AC-PPG outperformed
both AC-SIM (mean: 69%, STD: 11%) and AC-DTW (mean:
72%, STD: 10%). All the above preference scores are sta-
tistically significant (p � 0.001; one-tail) compared with
chance levels (50%). Since preference tests sometimes are
too coarse and will mask out nuances in raters’ attitudes, we
further used the confidence ratings to compute a more detailed
measurement – the cumulative confidence score (CCS) [53].
The CCS for each system in each comparison pair was
computed as follows. We treat each response as if it were
assigning a number of points to a system; for example, if
a listener preferred the AC-PPG system and was “somewhat
confident” (rated as three), then the AC-PPG system would
receive three points. We then computed the average CCS that

0 1 2 3 4 5 6 7 8 9

AC-PPG

Non-native (L2)

Native (L1)

Foreign accentedness rating

Reverse accentedness

Fig. 8. Foreign accentedness ratings for L1 (native English), L2 (non-native
English), and AC speech; the error bars show 95% confidence intervals.

listeners allocated to each system. Therefore, the highest score
a system can get is 350 points (7×50), within a comparison
pair. Results are summarized in Fig. 7 (b). As shown, all
comparison pairs have the same trend as in the preference
test, with AC-PPG performing significantly better than both
baselines. All differences in CCS were statistically significant
(p� 0.001, one-tail).

B. Experiment 2: Native to non-native conversion

In a second experiment, we evaluated whether AC-PPG can
perform the accent conversion task in the opposite direction
– creating a voice that has the native speaker’s voice quality,
but speaking with a non-native accent. Prior work [54] has
tackled this problem from a Text-To-Speech perspective, so we
wanted to determine if it could also be achieved through accent
conversion. Accordingly, for this experiment we performed
accent conversion in five directions that were from non-native
to native English speakers, i.e., RRBI to BDL, HKK to BDL,
YKWK to BDL, ABA to BDL, and TNI to CLB. The training
and testing data for all speakers was identical as that used for
Experiment 1.

In an initial listening test, we recruited 20 subjects to rate
the non-native English accent of the converted speech using a
nine-point Likert-scale rating test [2], where 1 corresponded to
“no accent” and 9 to “very strong accent.” For each conversion
direction, we randomly picked five utterances, and we made
sure that the final 25 (5×5) utterances for evaluation were
from different elicitation sentences. To provide a reference,
we also included the same set of sentences that were uttered
by the native and non-native speaker in the test. Therefore,
all listeners rated 75 (25×3) sentences. Given that our native
speakers (BDL and CLB) spoke American English, before
the test, we instructed listeners to consider that “A ‘foreign
accent’ is defined as an accent that is different from the
General American English accent.” We also provided two
samples of American accent English that were produced by
native speakers not used in this study. All listeners were
geographically located in the United States and all but one
listeners self-reported to be native English speakers. The only
listener whose native language is not English is a native Italian
speaker who also speaks English and French, and since this
participant passed our American accent pretest, we did not
exclude this participant’s responses. Results are summarized
in Fig. 8. On average, listeners rated the native speech to be
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Fig. 9. Voice similarity score for AC-L1 and AC-L2 comparisons.

1.4 points (closer to “no accent”) and the non-native speech
to be 6.4 points (closer to “very strong accent”). The accent-
converted speech had an average rating of 6.2 points (closer
to “very strong accent”), which was similar to the ratings of
the non-native speech. No significant difference was found
between accentedness ratings of non-native and AC speech
(t(19) = 0.82, p = 0.42, two-tail). Therefore, this experiment
indicates that our accent conversion approach was able to
impart the non-native accent of the non-native speaker to
utterances from a native speaker.

In a second listening test, we focused on evaluating whether
the converted speech retained the voice quality of the original
(native) speaker. Accordingly, we used the same VSS test as in
Experiment 1 to produce voice similarity scores between AC
sentences and the original native/non-native sentences. Twenty
listeners rated 50 utterance pairs, among which 25 were AC-
L1, and the rest were AC-L2 pairs. As before, we randomized
all presentation order and played the recordings in reverse.
Results are summarized in Fig. 9. Listeners were “confident”
that AC utterances had the voice quality of the native speakers
(mean AC-L1 VSS score 2.87), and was different from the
non-native speaker (mean AC-L2 VSS score -3.90) despite
that they share the same accent. Considering the results from
both listening tests in this experiment, we can conclude that
AC-PPG is able to impart a non-native accent to native voices.

C. Experiment 3: AC-PPG using non-parallel training data

Our method does not impose timing constraints when pair-
ing native and non-native speech frames: an acoustic frame
from the native speaker is paired with a frame in the non-
native speaker’s training set by minimizing the symmetric KL
divergence between their respective PPGs. Thus, in principle,
our method removes the constraint that native and non-native
speakers must produce the same set of utterances. This prop-
erty is particularly useful for real-world applications because
it allows more flexibility when recording training sentences.
Therefore, in a third and final experiment we evaluated the
AC performance by comparing two variants of our method:

- AC-PPG-P: the same system used in Experiment 1, i.e.,
using parallel sentences as the training data;

- AC-PPG-NP: a system that used non-parallel sentences.
For this purpose, we randomly selected 100 native train-

0% 10% 20% 30% 40% 50% 60%

AC-PPG-P

AC-PPG-NP

No preference

Non-parallel Quality

Fig. 10. Preference scores for comparing the acoustic quality of AC-PPG-P
and AC-PPG-NP; the error bars display the 95% confidence intervals.

0% 20% 40% 60% 80% 100%

AC-PPG-P

AC-PPG-NP
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Non-paralle Accent

Fig. 11. Preference scores for comparing foreign accentedness of AC-PPG-P
and AC-PPG-NP; the error bars display the 95% confidence intervals.

ing utterances that were different from those in the
non-native training or non-native test sentences. As a
result, the native and non-native speakers never uttered
any common sentence. All other configurations for this
system were the same as AC-PPG-P.

The AC directions and test sentences were the same as those
used in Experiment 1. For each system, we generated accent
converted sentences from all 50 testing samples for evaluation.

In a first listening study, we used a preference test to de-
termine which system yielded better acoustic quality. Twenty
participants rated 50 utterance pairs – one from AC-PPG-P and
the other from AC-PPG-NP, both utterances having the same
linguistic content. We randomly selected 10 utterance pairs
from each AC direction. For each pair, participants were asked
to pick the utterance that has the best acoustic quality. The
test allowed them to choose “no preference” as their response.
Results are summarized in Fig. 10. The majority of the votes
(40.3%) reflected no difference between the acoustic quality of
the two systems (“no preference”), and both systems received
a similar percentage of votes (29.7% for AC-PPG-P; 30.0%
for AC-PPG-NP). We found no significant difference in terms
of acoustic quality between using parallel or non-parallel data
(t(19) = 0.11, p = 0.91, two-tail).

In a second listening test, we investigated whether using
non-parallel data would affect the non-native ratings of the
converted speech. The experimental protocol was the same as
the one we used in the acoustic quality experiment, except that
in this case, for each AC-PPG-P and AC-PPG-NP utterance
pair, we asked participants to select the one that had the “least
foreign accent.” Twenty participants rated 50 utterance pairs,
10 pairs for each AC direction. Results are summarized in Fig.
11. The vast majority of the votes (84.3%) indicated that there
was no difference between the two systems. Furthermore, a t-
test on the preference scores for AC-PPG-P (mean 7.7%) and
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Fig. 12. Voice similarity scores for AC-PPG-NP.

AC-PPG-NP (mean 8.0%) revealed no significant differences
(t(19) = 0.17, p = 0.86, two-tail).

Finally, we asked 21 listeners to rate AC-PPG-NP sentences
in terms of voice quality. Each listener rated 50 converted
utterances, where we randomly selected 10 utterances from all
5 conversion directions. The VSS scores are summarized in
Fig. 12. The average AC-L1 VSS is -2.64 (std: 1.52), and 3.07
(std: 1.48) for AC-L2. Using a two-tail independent samples
t-test assuming unequal variances8, we found no significant
difference between the average VSS for the AC-PPG system in
Fig. 6 and those in Fig. 12. For AC-L1, the test gave t(43) =
1.44, p = 0.16. For AC-L2, the test yielded t(40) = 1.06,
p = 0.29. Thus, this experiment verified that using non-parallel
data still allows our frame-pairing technique to preserve the
non-native speaker’s voice quality in the converted speech.

VI. DISCUSSION

In prior work [12], Aryal and Gutierrez-Osuna had shown
that paring speech frames based on acoustic similarity (i.e.,
the AC-SIM baseline in our study), and then using the re-
sulting frame pairs to train a voice conversion model could
be used to create a voice that captured a native speaker’s
pronunciation and a non-native speaker’s voice quality. Their
method was able to achieve significantly better accentedness
rating compared with pairing frames using DTW, though
the results were based on a single pair of speakers. During
our internal evaluations (results not shown) with multiple
pairs of speakers and several set of non-native accents, we
found that the speech generated by AC-SIM still contained
noticeable mispronunciations. Since AC-SIM normalizes the
vocal tract length difference between native and non-native
speakers, we hypothesized that there remains a lot of other
unattended speaker-dependent (SD) information in the VTLN-
transformed acoustic feature space, which makes the resulting
frame pairing not ideal. PPGs, on the other hand, are produced
by speaker-independent (SI) acoustic models built for ASR. As
a result, the most dominant information in PPGs is linguistic
information. These analyses reinforced our intuition to use

8The two groups we are comparing have 26 (AC-PPG in Fig. 6) and 21
(AC-PPG-NP) subjects respectively, therefore, it is not reasonable to assume
that they have the same variance.

AC-PPG to eliminate the effects of SD cues in the frame
pairing process.

The listening tests in Experiment 1 show that the proposed
frame pairing method can significantly reduce the non-native
accent ratings compared with two baselines. In terms of voice
similarity between the non-native speaker and the converted
speech, AC-PPG performs as well as AC-SIM. Although the
speech generated by AC-DTW was rated more similar to the
non-native speaker than AC-PPG, we suspected that it is hard
to decouple the influence of accent and voice quality on the
perceived speaker identity (refer to Section I for difference
between voice quality and speaker identity). Listeners may
have used the remaining foreign accent in the AC-DTW
utterances to select the speaker identity of the utterances
instead of their voice quality. Therefore, an interesting future
direction would be to design a new perceptual experiment
protocol that can better decouple voice quality and accent
in spoken sentences, compared with the current solution of
playing audio in reverse.

Another interesting observation from Experiment 1 is that
despite using the same spectral conversion model as the
two baseline systems, AC-PPG can significantly boost the
acoustic quality of the synthesis. When comparing the speech
syntheses from AC-PPG with the others, we did notice that
there were fewer noises and artifacts. One possible explanation
for this is that AC-PPG pairs frames with similar phonetic
context. Therefore, frame pairs have similar spectral structures,
making the statistical regression model for spectra estimation
less likely to introduce odd shapes in the predicted spectral
envelopes. Consequently, better spectral predictions lead to
better synthesis quality. Future work could investigate if this
property of AC-PPG generalizes to other statistical conversion
models that take frame pairs as training input (e.g., deep neural
networks [10], [29], direct waveform modification [9]).

Experiments 2 and 3 investigated other interesting aspects of
the proposed frame-pairing method. Experiment 2 verified that
AC-PPG could also work in the opposite conversion direction
– creating an artificial voice that has a native speaker’s voice
quality while speaking in a foreign accent. This artificial voice
can be useful for generating materials for perceptual studies.
For example, it can map speech from speakers that have
different accents to the same voice quality, therefore removing
the impact of voice quality when comparing differences in
accents. Experiment 3 verified that we could use non-parallel
dataset to achieve the same accent conversion performance
(measured in acoustic quality, accentedness, and voice quality)
using AC-PPG. One possible reason why we could use non-
parallel training data is that AC-PPG looks at a fine-grained
context (95 ms in the current implementation)9, and this
context size is comparable with the duration of a vowel [55]
or consonant [56] segment in American English. Therefore, as
long as the two sets of training data from native and non-native

9Each frame of PPG feature looks at a larger context than the analysis
window (25 ms), because the input to the acoustic model consists of nine
frames of adjacent LDA feature, and each frame was computed from seven
consecutive MFCC feature vectors (25 ms). Therefore, the total context for
a frame of PPG feature is 9+7-1=15 consecutive analysis windows, which
converts to 95 ms under a 5 ms window shift.
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speakers have a balanced phonetic distribution, the approach is
indifferent to the actual word-level prompts. The non-parallel
data constraint is much more relaxed than the widely used
parallel constraint, making the proposed method applicable to
real-world scenarios, where parallel data are scarce or tedious
to obtain.

AC-PPG can run efficiently with careful optimization and
GPU-based parallelization. In our experiments, it generally
took no more than two minutes to compute the pairing between
100 training utterances (∼5 minutes of speech) from the native
and non-native speakers. Further reductions in computation
time may be achieved via dimensionality reduction and clus-
tering.

At present, our ratings of acoustic quality are on the low end
of what state-of-the-art voice conversion systems can achieve
[57]. This is largely due to the choice of voice conversion
system used, i.e., a conventional GMM-based spectral conver-
sion system as a case study, which was needed to ensure a
fair comparison with our previous work [12]. Fortunately, our
frame-pairing approach can be combined with other spectral
conversion methods to produce higher quality speech syn-
thesis. For example, instead of converting speech frame-by-
frame, we could perform the conversion over a larger context
(e.g., sequence to sequence conversion [58].) Using a larger
conversion context is likely to increase the acoustic quality
[59], [60]. More importantly, mispronunciations often occur at
the segment level, which is beyond the scope of frame-level
conversion, and contextual information has to be taken into
consideration to accurately correct segmental pronunciation
errors in accent conversion.

Another line of ongoing work in our group is to relax the
non-parallel data constraint further to allow the use of cross-
lingual training data. In preliminary experiments (not shown
here), we successfully performed accent conversion using
utterances recorded in the target speaker’s native language to
capture their voice quality10.

VII. CONCLUSION

We have proposed a new frame-pairing method based on the
phonetic similarity between acoustic frames. To measure pho-
netic similarity, we map source and target frames into a pho-
netic posteriorgram space using speaker-independent acoustic
models trained on a native English corpus. Through a series
of perceptual studies, we have shown that merely changing
the frame pairing method can lead to significant improvement
in acoustic quality and “nativeness,” while keeping the voice
quality of the non-native speaker. Our results also show that
the approach works well across multiple non-native speakers
with different native tongues. Additionally, the proposed algo-
rithm does not need parallel data for training, which is ideal
for real-world applications. Our approach only requires 5-10

10In these preliminary experiments, we used native Brazilian Portuguese
speakers from the SID dataset [61] as the target speakers. Since Portuguese
share some phonological similarities with English [62], we used the acoustic
model used in this study directly to produce the PPGs from native Portuguese
speech. For future work and more general cases (e.g., languages from the
Sino-Tibetan family), we have to include senones from the target speaker’s
native tongues in the acoustic modeling process.

minutes of speech data from the non-native speaker, making
it practical for pronunciation training in realistic settings [63].
The implementation of the proposed system can be found at
https://github.com/guanlongzhao/ppg-gmm.
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