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Converting Foreign Accent Speech Without a
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Abstract— Foreign accent conversion (FAC) is the problem
of generating a synthetic voice that has the voice identity of a
second-language (L2) learner and the pronunciation patterns of
a native (L1) speaker. This synthetic voice has been referred to
as a “golden-speaker” in the pronunciation-training literature.
FAC is generally achieved by building a voice-conversion model
that maps utterances from a source (L1) speaker onto the target
(L2) speaker. As such, FAC requires that a reference utterance
from the L1 speaker be available at synthesis time. This greatly
restricts the application scope of the FAC system. In this work, we
propose a “reference-free” FAC system that eliminates the need
for reference L1 utterances at synthesis time, and transforms
L2 utterances directly. The system is trained in two steps.
First, a conventional FAC procedure is used to create a golden-
speaker using utterances from a reference L1 speaker (which
are then discarded) and the L2 speaker. Second, a pronunciation-
correction model is trained to convert L2 utterances to match the
golden-speaker utterances obtained in the first step. At synthesis
time, the pronunciation-correction model directly transforms a
novel L2 utterance into its golden-speaker counterpart. Our
results show that the system reduces foreign accents in novel L2
utterances, achieving a 20.5% relative reduction in word-error-
rate of an American English automatic speech recognizer and
a 19% reduction in perceptual ratings of foreign accentedness
obtained through listening tests. Over 73% of the listeners also
rated golden-speaker utterances as having the same voice identity
as the original L2 utterances.

Index Terms—accent conversion, speech synthesis, acoustic
model, sequence-to-sequence voice conversion, speech modifica-
tion.

I. INTRODUCTION

FOREIGN accent conversion (FAC) [1] aims to create a
synthetic voice that has the voice identity (or timbre) of

a non-native speaker but the pronunciation patterns (or ac-
cent)1 of a native speaker. In the context of computer-assisted
pronunciation training [1]–[4], this synthetic voice is often
referred to as a “golden speaker” for the non-native speaker
–a second-language (L2) learner. The rationale is that the
golden speaker is a better target for the L2 learner to imitate
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1We use the terms “accent” and “pronunciation pattern” interchangeably in
this manuscript. A foreign accent can be defined as the systematic deviation
from the standard norm of a spoken language. The deviations can be observed
at the segmental level (e.g., substitution, deletion, or insertion of phones)
and/or at the suprasegmental level (prosody deviations; such as differences in
intonation, tone, stress, and rhythm.)

than an arbitrary native speaker, because the only difference
between the golden speaker and the L2 learner’s own voice
is the accent, which makes mispronunciations more salient.
In addition to pronunciation training, FAC finds applications
in movie dubbing [5], personalized Text-To-Speech (TTS)
synthesis [6], [7], and improving automatic speech recognition
(ASR) performance [8].

The main challenge in FAC is that one does not have
ground-truth data for the desired golden speaker, since, in
general, the L2 learner is unable to produce speech with a
native accent. Therefore, it is not feasible to apply conventional
voice-conversion techniques to the FAC problem. Previous
solutions work around this issue by requiring a reference
utterance from a native (L1) speaker at synthesis time. But
this limits the types of pronunciation practice that FAC tech-
niques can provide, e.g., the L2 learner can only practice
sentences that have already been prerecorded by the reference
L1 speaker.

To address this issue, we propose a new FAC system that
does not require a reference L1 utterance at inference
time. We refer to this type of FAC system as reference-
free. Assume that we have a training set of parallel utterances
from the L2 learner and from a reference L1 speaker. The
training pipeline consists of two steps. In step one, we build
an L2 speech synthesizer [9] that maps speech embeddings
(see below) from L2 utterances into their corresponding Mel-
spectrograms. The speech embeddings are extracted using an
acoustic model trained on a large corpus of native speech,
so they are speaker-independent [10], [11]. We then drive the
L2 synthesizer with speech embeddings extracted from the L1
utterances. This results in a set of golden-speaker utterances
that have the voice identity of the L2 learner (since they
are generated from the L2 synthesizer) and the pronunciation
patterns of the L1 speaker (since the input is obtained from
an L1 utterance). The L1 utterances can be discarded at this
point. In the second (and key) step, we train a pronunciation-
correction model that converts the L2 utterances to match
the golden-speaker utterances obtained in the first step, which
serve as a target. During inference time, we can then feed a
new L2 utterance to the pronunciation-correction model, which
then generates its “accent free” counterpart.

The pronunciation-correction model is based on a state-
of-the-art sequence-to-sequence (seq2seq) voice conversion
framework proposed by Zhang et al. [12], which we use as
a baseline. Their system consists of an encoder to extract
hidden representations of the input features (e.g., Mel-spectra),
an attention mechanism to learn the alignment between the
input and output sequences, a decoder to predict the output
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Mel-spectrograms, and multi-task phoneme classifiers to help
stabilize the training process. During our internal evaluation of
the baseline system, we found that it had difficulty converting
between an L2 and an L1 speaker because L2 utterances tend
to have a significant amount of disfluency and hesitations,
which makes it hard for the attention mechanism to properly
align input and output sequences. To address this issue, our
system includes a forward-and-backward decoding technique
[13], [14] in the pronunciation-correction model to help the at-
tention mechanism and decoder to fully utilize the information
in the input data. The rationale is that, by forcing the decoder
to compute the attention alignments from both the forward and
backward directions during training, we can make the decoder
incorporate useful contextual information from both the past
and future when producing the alignment. Throughout this
study, we use a high-quality WaveGlow [15] real-time neural
vocoder to convert Mel-spectrograms to speech waveform.

The manuscript is organized as follows. Section II reviews
prior approaches on FAC as well as related work in seq2seq
voice conversion. Section III describes the proposed reference-
free FAC system. Sections V, IV, and VI present the objective
and subjective evaluation results and an in-depth discussion of
these results. Lastly, we summarize the findings of this work
in Section VII and point out future research directions. We
include three appendices that provide related details.

II. RELATED WORK

A. Conventional FAC methods

FAC is related to the more general problem of voice
conversion (VC) [16]. In VC, one seeks to transform a source
speaker’s speech into that of a (known) target speaker. The
conversion aims to match the voice characteristics of the
target speaker, which include vocal tract configurations, glottal
characteristics, pitch range, pronunciation, and speaking rate;
ideally, the only information retained from the source speech
is its linguistic content, i.e., the words that were uttered.
In contrast with VC, FAC seeks to combine the linguistic
content and pronunciation characteristics of the source speaker
with the voice identity of the target speaker. This is a more
challenging problem than VC for two reasons. First, FAC lacks
ground-truth since generally there are no recordings of the L2
speaker producing speech with the desired native target accent.
But, more importantly, FAC requires decomposing the speech
into voice identity and accent, whereas VC does not. Several
techniques have been proposed to perform this decomposition,
which can be grouped into articulatory and acoustic methods.
The basic strategy in articulatory methods is to build an
articulatory synthesizer for the L2 speaker, that is, a mapping
from the speaker’s articulatory trajectories (e.g., tongue and lip
movements) to his or her acoustics features (e.g., Mel Cepstra.)
Once complete, the L2 speaker’s articulatory synthesizer is
driven by articulatory trajectories from an L1 speaker to
produce “accent-free” speech2. A number of techniques can

2This process can be likened to “voice puppetry” [17], where the puppet
is the articulatory synthesizer and the strings are the native speaker’s articu-
lations.

be used to build the articulatory synthesizer, including unit-
selection [18], GMMs [19], and DNNs [20].

Decoupling voice identity from accent in the articulatory
domain is intuitive, but impractical in most cases since col-
lecting articulatory data is expensive and requires specialized
equipment3. In contrast, decoupling voice identity from accent
in the acoustic domain is more practical since it only requires
recording speech with a microphone, but is more challeng-
ing from a speech-processing standpoint. The conventional
approach used in VC (pairing source and target frames via
dynamic time warping; DTW) cannot be used in FAC, since it
would result in a model that maps native-accented source into
non-native-accented target speech. Instead, source and target
frames have to be paired based on their linguistic similarity.
In early work, Aryal and Gutierrez-Osuna [24] replaced DTW
with a technique that matched source (L1) and target (L2)
frames based on their MFCC similarity after performing vocal
tract length (VTL) normalization. Then, they trained a GMM
with those frame pairs to map source L1 utterances to have
the target L2 speaker’s identity, while retaining the native
pronunciations. More recently, Zhao et al. [25] used a speaker-
independent acoustic model (i.e., from an ASR system) to
estimate the posterior probability that each frame belonged to
a set of pre-defined phonetic units –a phonetic posteriorgram
(PPG) [26]. Once a PPG had been computed for each source
and target frame in the corpus, the two were paired in a
many-to-many fashion based on the similarity between their
respective PPGs [11], [25]. In their study, matching source and
target frames based on their PPG similarity achieved better
ratings on accentedness and acoustic quality than matching
them based on the VTL-normalized MFCC similarity of Aryal
and Gutierrez-Osuna [24].

B. FAC methods using sequence-to-sequence models

More recently, Zhao et al. [27] have used sequence-to-
sequence (seq2seq) models to perform FAC. In their approach,
a seq2seq speech synthesizer is trained to convert PPGs to
Mel-spectra using recordings from the L2 speaker. Then,
golden-speaker utterances are generated by driving the seq2seq
synthesizer with PPGs extracted from an L1 utterance, a
process that reminisces articulatory-based methods (i.e., if
PPGs are viewed as articulatory information). Their method
produced speech that was significantly less accented than the
original L2 speech. Seq2seq models have also garnered much
attention in the VC literature since, unlike prior frame-by-
frame VC models [28]–[33], they can convert segmental and
prosody features simultaneously, leading to better conversion
performance. Miyoshi et al. [34] built a seq2seq model that
mapped source context posterior probabilities to the target’s;
they obtained better speech individuality ratings (but worse
audio quality) than a baseline without the context posterior
mapping process. Zhang et al. [35] concatenated bottleneck
features and Mel-spectrograms from a source speaker, used
a seq2seq model to convert the concatenated source features

3Articulatory measurements can be performed via electromagnetic articu-
lography [18], ultrasound imaging [21], palatography [22], and more recently,
real-time MRI [23].
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into the target Mel-spectrogram, and finally recovered the
speech waveform with a WaveNet [36] vocoder. This model
outperformed the best-performing system from the 2018 Voice
Conversion Challenge [37]. Zhang et al. then applied text su-
pervision [12] on top of [35] to resolve some of the mispronun-
ciations and artifacts in the converted speech. More recently,
they extended their framework to the non-parallel condition
[38] with trainable linguistic and speaker embeddings. Other
notable sequence-to-sequence VC works include [39], which
proposed a novel loss term that enforced attention weight
diagonality to stabilize the seq2seq training; the Parrotron [8]
system, which used large-scale corpora and seq2seq models to
normalize arbitrary speaker voices to a synthetic TTS voice;
and [40], which used a fully convolutional seq2seq model
instead of conventional recurrent neural networks (RNNs, e.g.,
LSTM) because RNNs are costly to train and difficult to
optimize for parallel computing.

C. Prior reference-free FAC approach

To the best of our knowledge, the only prior work on
reference-free FAC is a recent study by Liu et al. [41].
Their system used a speaker encoder, a multi-speaker TTS
model, and an ASR encoder. The speaker encoder and the
TTS model are trained with L1 speech only, and the ASR
encoder is trained on speech data from L1 speakers and
the target L2 speaker. During testing, they use the speaker
encoder and ASR encoder to extract speaker embeddings and
linguistic representations from the input L2 testing utterance,
respectively. Then, they concatenate the two and feed them
to the multi-speaker TTS model, which then generates the
accent-converted utterance. Their evaluations suggested that
the converted speech had a near-native accent, but did not
capture the voice identity of the target L2 speaker because
it had to be interpolated by their multi-speaker TTS. Our
proposed method avoids this problem since our pronunciation-
correction module is trained on golden-speaker utterances
that have been pre-generated for the L2 speaker using a
conventional FAC framework.

III. METHOD

Our proposed approach to reference-free FAC is illustrated
in Figure 1. The system requires a parallel corpus of utterances
from the L2 speaker and a reference L1 speaker. As outlined in
the introduction and shown in the figure, the training process
consists of two steps. In a first step, we build a speech syn-
thesizer for the L2 speaker that converts speech embeddings
into Mel-spectrograms. We then drive the L2 synthesizer with
a set of utterances from the reference L1 speaker, to produce
a set of golden-speaker utterances (i.e., L2 voice identity with
L1 pronunciation patterns). We refer to these as L1 golden-
speaker (L1-GS) utterances, since they are obtained using L1
utterances as a reference. The L1 utterances can be discarded
at this point. In a second step, we build a pronunciation-
correction model that directly transforms L2 utterances to
match their corresponding L1-GS utterances obtained in the
previous step, that is, without the need for the L1 reference.
We refer to the outputs of the pronunciation-correction model
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Fig. 1. Overall workflow of the proposed system. L1: native; L2: non-native;
GS: golden speaker; SI: speaker independent. The training stage consists of
two steps. In step 1, we use a conventional FAC procedure to generate a set
of golden-speaker utterances (L1-GS), which serve as targets for step 2. In
step 2, we train a pronunciation-correction model that converts L2 utterances
into the L1-GS utterances obtained earlier. Once the pronunciation correction
model is trained, in the testing stage, a new L2 utterance is processed by the
pronunciation-correction model to create its “accent-free” counterpart (L2-
GS).

as L2-GS utterances since they are generated directly from
L2 utterances (i.e., in a reference-free fashion). Critical in this
process is the generation of the speaker embeddings, which
we describe first.

A. Extracting speaker-independent speech embeddings

We use an acoustic model (AM) to generate a speaker-
independent (SI) speech embedding for an input (L1 or L2)
utterance. Our AM is a Factorized Time Delayed Neural Net-
work (TDNN-F) [42], [43], a feedforward neural network that
utilizes time-delayed input in its hidden layers to model long
term temporal dependencies. TDNN-F can achieve perfor-
mance on Large Vocabulary Continuous Speech Recognition
(LVCSR) tasks that is comparable to that of AMs based on
recurrent structures (e.g., Bi-LSTMs), but is more efficient
during training and inference due to its feedforward nature
[42]. To produce an SI speech embedding, we concatenate
each acoustic feature vector (40-dim MFCC) with an i-vector
(100-dim) of the corresponding speaker [44] and use them as
inputs to the AM, which we then train on a large corpus from
a few thousand native speakers (Librispeech [45])4.

As part of this study, we evaluated three different speech
embeddings:

• Senone phonetic posteriorgram (Senone-PPG): The
output from the final softmax layer of the AM, which

4The AM is trained following the Kaldi [46] “tdnn 1d” configuration of the
TDNN-F model. We use the full training set (960 hours) in the Librispeech
corpus for acoustic modeling. A subset (200 hours) of the training set is used
to train the i-vector extractor.
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Time

Fig. 2. Mono-PPG of a spoken word balloon, whose pronunciation is “B AH
L UW N” in the ARPAbet phoneme set. “SIL” means silence. The colorbar
shows the probability values from zero to one. For visualization purposes,
we omitted rows (monophones) with low values, and also aggregated the
probability mass of all monophones that only differ in stressing and word
positions (e.g., we added the probability mass of AH{∅, 0, 1, 2} {initial,
mid, final} into a single entry AH). An American English speaker uttered
this word.

is high dimensional (6,024 senones) and contains fine-
grained information about the pronunciation pattern in
the input utterance.

• Bottleneck feature (BNF): The output of the layer prior
to the final softmax layer of the AM. The BNF contains
rich classifiable information for a phoneme recognition
task, but lower dimensionality (256).

• Monophone phonetic posteriorgram (Mono-PPG):
The phonetic posteriorgram obtained by collapsing the
senones into monophone symbols (346 monophones with
word positions, e.g., word-initials, word-finals). For each
monophone symbol, we aggregate the probability mass
of all the senones that share the same root monophone.
Figure 2 visualizes the Mono-PPG of a spoken word. We
omit the visualization of the other two speech embeddings
since they are more difficult to interpret.

B. Step 1: Generating a reference-based golden-speaker (L1-
GS)

The speech synthesizer is based on a modified Tacotron2
architecture5 [9], and is illustrated in Figure 3. The model
follows a general encoder-decoder (or seq2seq) paradigm with
an attention mechanism. Conceptually, an encoder-decoder
architecture uses an encoder (usually a recurrent neural net-
work; RNN) to “consume” input sequences and generate a
high-level hidden representation sequence. Then, a decoder
(an RNN with an attention mechanism) processes the hidden
representation sequence. The attention mechanism allows the
decoder to decide which parts of the hidden representation
sequence contain useful information to make the predictions.
At each output time step, the attention mechanism computes
an attention context vector (a weighted sum of the hidden
representation sequence) to summarize the contextual infor-
mation. The decoder RNN reads the attention context vectors
and predicts the output sequence in an autoregressive manner.

5To facilitate the method description and maintain consistency with prior
literature, we adopt the following terminologies from Tacotron2: PreNet: Two
fully connected layers with a ReLU nonlinearity; PostNet: Five stacked 1-D
convolutional layers; LinearProjection: One fully connected layer.

Our speech synthesizer takes the speech embeddings as
input. Then, if the input speech embeddings have high di-
mensionality (e.g., Senone-PPGs), we reduce their dimensions
through a learnable input PreNet. This step is essential for
the model to converge when using high-dimensional speech
embeddings as input. For speech embeddings with lower
dimensionality, such as Mono-PPGs and BNFs, we skip the
input PreNet. The speech embeddings are then passed through
multiple 1-D convolutional layers, which model longer-term
context. Next, an encoder (one Bi-LSTM) converts the con-
volutions into a hidden linguistic representation sequence.
Finally, we pass the hidden linguistic representation sequence
to the decoder, which consists of a location-sensitive attention
mechanism [47] and a decoder LSTM, to predict the raw Mel-
spectrogram. We note that the input and output sequences of
the speech synthesizer have the same length6, and thus, the
speech synthesizer only models the speaker identity and retains
the phonetic and prosodic cues carried by the input speech
embeddings.

Formally, let [a; b] represent the operation of concatenating
vectors a and b, h = [h1, . . . , hT ] be the full sequence of
hidden linguistic representation from the encoder and (·)>
denote the matrix transpose. At the i-th decoding time step,
applying the location-sensitive attention mechanism, the atten-
tion context vector ci is the weighted sum of h,

ci = αi · h>, (1)

αi = AttentionLayers (qi, αi−1, h) =
[
α1
i , . . . , α

T
i

]
, (2)

qi = AttentionLSTM
(
qi−1,

[
ci−1;DecoderPreNet

(
ŷmel
i−1
)])

,
(3)

αj
i =

exp (eij)∑
j=1 exp (eij)

, (4)

eij = v> tanh
(
Wqi + V hj + Uf ji + b

)
, (5)

fi = F ∗ αi−1 =
[
f1i , . . . , f

T
i

]
, F ∈ Rk×r. (6)

αi =
[
α1
i , . . . , α

T
i

]
are the attention weights. qi is the output

of the attention LSTM, and ŷmel
i−1 is the predicted raw Mel-

spectrum from the previous time step. v, W , V , U , b, F are
learnable parameters of the attention layers. F contains k 1-D
learnable kernels with kernel size r, and f ji ∈ Rk is the result
of convolving αi−1 at position j with F .

Next, let di be the output of the decoder LSTM at decoding
time step i, and ŷmel

i be the new raw Mel-spectrum prediction,
we have,

6A recent study [48] (published while this manuscript was under review)
used a conversion model similar to the one used in our work. The authors
observed that if the temporal structure (such as the length) of the input and
output sequences were the same, then removing the attention module did
not hurt performance, which suggests a potential path to further simplify the
model structure of the speech synthesizer we used here.
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figure for better visualization.

di = DecoderLSTM (di−1, [qi; ci]) , (7)

ŷmel
i = LinearProjectionmel ([di; ci]) . (8)

At each time step, to determine if the decoder prediction
reaches the end of an utterance, we compute a binary stop
token (1: stop; 0: continue) using a separate trainable fully
connected layer,

ŷstopi =

1 Sigmoid
(

LinearProjectionstop ([di; ci])
)
≥ 0.5

0 Sigmoid
(

LinearProjectionstop ([di; ci])
)
< 0.5

(9)
The original Tacotron 2 was designed to accept character

sequences as input, which are significantly shorter than our
speech embedding sequences. For example, each sentence in
our corpus contains 41 characters on average, whereas the
corresponding speech embedding sequence has a few hun-
dred frames. Therefore, the vanilla location-sensitive attention
mechanism might fail, as pointed out in [35]. As a result, the
inference would be ill-conditioned and would generate non-
intelligible speech. Following a preliminary study [27] of this
work, we add locality constraint to the attention mechanism.
Speech signals have a strong temporal-continuity and progres-
sive nature. To capture the phonetic context, we only need
to look at the speech embeddings in a small local window.
Inspired by this, at each decoding step during training, we
constrain the attention mechanism to only consider the hidden
linguistic representation within a fixed window centered on
the current frame, i.e., let,

h̃ = [0, . . . , 0, hi−w, . . . , hi, . . . , hi+w, 0, . . . , 0] , (10)

where w is the window size. Consequentially, we replace eq.
(2) with eq. (11),

αi = AttentionLayers
(
qi, αi−1, h̃

)
. (11)

Finally, to further improve the synthesis quality, the speech
synthesizer appends a PostNet after the decoder to predict
residual spectral details from the raw Mel-spectrum prediction,
and then adds the spectral residuals to the raw Mel-spectrum,

ŷPostNet
i = ŷmel

i + PostNet
(
ŷmel
i

)
. (12)

The advantage of the PostNet is that it can see the entire
decoded sequence. Therefore, the PostNet can use both past
and future information to correct the prediction error for each
individual frame [49].

The loss function for training this speech synthesizer is,

L =w1

(
‖Ymel − Ŷ Decoder

mel ‖2 + ‖|Ymel − Ŷ PostNet
mel ‖2

)
+

w2CE
(
Ystop, Ŷstop

)
,

(13)

where Ymel is the ground-truth Mel-spectrogram; Ŷ Decoder
mel

and Ŷ PostNet
mel are the predicted Mel-spectrograms from the

decoder and PostNet, respectively; Ystop and Ŷstop are the
ground-truth and predicted stop token sequences; CE(·) is the
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cross-entropy loss; w1 and w2 control the relative importance
of each loss term.

The predicted Mel-spectrograms are converted back to audio
waveforms using a WaveGlow neural vocoder trained on the
L2 utterances (cf. Section III-D for more details). We then
drive the L2 synthesizer with a set of utterances from the
reference L1 speaker, to produce the L1-GS utterances that
are used in Step 2.

C. Step 2: Generating the reference-free golden speaker (L2-
GS) via pronunciation-correction

Our pronunciation-correction model is based on a state-of-
the-art seq2seq VC system proposed by Zhang et al. [12].
We chose this system as a baseline since it outperformed the
best system in the Voice Conversion Challenge 2018 [37].
The rationale behind using a VC system as the pronunciation-
correction model is that VC can convert both the voice identity
and the accent to match the target speaker. In our application
scenario, we treat the L2 speaker and the L1-GS as the source
and target speakers in a VC task, respectively. Since the two
speakers already share the same voice identity, the VC model
only needs to match the accent of the target speaker (i.e., the
golden speaker). During the inference stage, we can directly
input L2 speech into the pronunciation-correction model, and
the output will share similar pronunciation patterns as the L1-
GS. The difficulty of this procedure is that L2 speakers tend to
have disfluencies, hesitations, and inconsistent pronunciations,
making the conversion much harder than converting between
two native speakers, as discussed in prior literature [11].
To overcome this difficulty, we propose to use a variation
of the forward-and-backward decoding technique [13], [14],
in addition to the baseline pronunciation model, to achieve
better pronunciation-correction performance. We first formally
introduce the baseline system, and then describe the proposed
improvement.

The baseline system is also based on an encoder-decoder
paradigm with an attention mechanism. Figure 4 shows an
overview of the baseline system. Unlike conventional frame-
by-frame VC systems (e.g., GMM, feedforward neural net-
works), which need time-alignment between the source and
target speakers to generate the training frame pairs, seq2seq
systems use an attention mechanism to produce learnable
alignments between the input and output sequences. Therefore,
they can also adjust for prosodic differences (e.g., pitch, du-
ration, and stressing) between the input and output sequences.
In our application, this is crucial since prosody errors also
contribute to foreign accentedness.

Specifically, let xi be the i-th feature vector in the sequence,
the input X = [x1, . . . , xTin

] to the conversion system is
the concatenation of the bottleneck features7 (i.e., BNFs,
cf. Section III-A) and Mel-spectrogram computed from the
L2 utterance. The output sequence is denoted by Ymel =
[ymel

1 , . . . , ymel
Tout

] where ymel
i is the i-th Mel-spectrum of

the L1-GS utterance. A two-layer Pyramid-Bi-LSTM encoder
[50] with a down-sampling rate of two consumes the input

7Zhang et al. [12] use BNFs in their implementation, and we follow this
design choice to replicate their system.

𝑥!"#$ 𝑥!" 𝑥!"%$ 𝑥!"%!

ℎ" ℎ"%$

Encoder (Pyramid-Bi-LSTM)
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Mel-spectrogram
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L1-GS
Mel-spectrogram
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Fig. 4. Training pipeline of the baseline pronunciation-correction model. The
input feature sequence (concatenation of bottleneck features [BNFs] and Mel-
spectra) from the L2 speaker is converted into the L1-GS Mel-spectrogram.
The phoneme classifications are only applied to stabilize the model training
and are discarded during testing. The encoder is constructed with a two-layer
Pyramid-Bi-LSTM. The decoder has the same neural network structure as the
one in Figure 3.

sequence and produces the encoder hidden embeddings h =
[h1, . . . , hbi/2c, . . . , hbTin/2c], where hbi/2c is one encoder
hidden embedding vector, and b·c is the floor-rounding opera-
tor. The first Bi-LSTM layer does the recurrent computations
on X and outputs hlayer1 = [h1layer1, . . . , h

Tin

layer1]. We then
concatenate each two of the consecutive frames in hlayer1
to form [[h1layer1;h

2
layer1], . . . , [h

Tin−1
layer1;h

Tin

layer1]]. Finally, we
feed the concatenated vectors to the second Bi-LSTM layer
to produce h. In the case that we have an odd number of
frames in the input sequence, we drop the last frame, which
is generally a silent frame. The down-sampling effectively
reduces the sequence length of the input, which speeds up the
encoder computation by a factor of two and makes it easier
for the attention mechanism to learn a meaningful alignment
between the input and output sequences.

The decoder in this model has a similar neural-network
structure as the speech synthesizer decoder in Section III-B
(Figure 3), with only two differences: (1) to replicate Zhang
et al. [12], we use the forward-attention technique [51] instead
of eq. (4) to normalize the attention weights; (2) the locality
constraint defined in equations (10) and (11) is discarded. The
decoder predicts the output raw Mel-spectrogram sequence
Ŷ Decoder
mel = [ŷmel

1 , . . . , ŷmel
Tout

] and the stop token sequence
Ŷstop = [ŷstop1 , . . . , ŷstopTout

] following equations (8) and (9),
respectively. Ŷ Decoder

mel is also processed through a PostNet to
generate a residual-compensated Mel spectrogram Ŷ PostNet

mel ,
following eq. (12). As in the previous step, Ŷ PostNet

mel is
converted back to audio waveforms using a WaveGlow neural
vocoder trained on the L2 utterances.

In addition, the baseline system uses multi-task learning
[52], [53] to make the synthesized pronunciations more stable.
Two independent phoneme classifiers, each containing one
fully-connected layer and a softmax operation, are added to
predict the input and output phoneme sequences ŶinP =
[ŷinP1 , . . . , ŷinPTin

] and ŶoutP = [ŷoutP1 , . . . , ŷoutPTout
], respec-

tively. These phoneme classifiers are only used during training
and are discarded in inference. ci and qi are defined in the
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Fig. 5. Proposed forward-and-backward decoding model for pronunciation-
correction. The existing decoder in the baseline model is denoted as the
forward decoder here. We omitted the other common components it shares
with the baseline model. The PostNet of the two decoders shares the same set
of weights. This forward-and-backward decoding procedure is only activated
during training.

same manner as in equations (1) and (3).

ŷinPi = PhonemeClassifierin (hi) . (14)

ŷoutPi = PhonemeClassifierout ([qi; ci]) . (15)

The final loss function of the baseline system becomes,

Lbase =w1

(
‖Ymel − Ŷ Decoder

mel ‖2 + ‖|Ymel − Ŷ PostNet
mel ‖2

)
+

w2CE
(
Ystop, Ŷstop

)
+

w3

(
CE
(
YinP , ŶinP

)
+ CE

(
YoutP , ŶoutP

))
,

(16)

where YinP , YoutP are the ground-truth input and output
phoneme sequence, respectively.

To improve predictive performance, we propose a mod-
ification to the baseline system that applies forward-and-
backward decoding during the training process. The forward-
and-backward decoding technique maintains two separate de-
coders, i.e., the forward and backward decoders. The forward
decoder processes the encoder outputs in the forward direction,
whereas the backward decoder reads the encoder outputs
reversely. Different variations of this technique have been
applied to TTS [14] and ASR [13]. Figure 5 shows an overview
of this procedure. During training, we add a backward decoder
to the baseline model. The backward decoder has the same
structure as the existing decoder (denoted as the forward
decoder) but with a different set of weights. The backward
decoder functions the same as the forward decoder except
that it processes the encoder’s output in reverse order and
predicts the output Mel-spectrogram Ŷ bwd

mel reversely as well.
The backward decoder, like its forward counterpart, also
predicts its own set of stop tokens Ŷ bwd

stop , output phoneme
labels Ŷ bwd

outP , and uses the shared PostNet to predict a refined
Mel-spectrogram Ŷ bwd

mel-PostNet. The loss terms contributed by
adding this backward decoder are,

Lbwd =w1

(
‖Ymel − Ŷ bwd

mel ‖2 + ‖|Ymel − Ŷ bwd
mel-PostNet‖2

)
+

w2CE
(
Ystop, Ŷ

bwd
stop

)
+ w3

(
CE
(
YoutP , Ŷ

bwd
outP

))
.

(17)

Additionally, to force the two decoders to learn complemen-
tary information from each other, we train the two decoders to
produce the same attention weights by including the following
loss term,

Latt = w4‖αfwd − αbwd‖2, (18)

where αfwd and αbwd are the attention weights of the forward
and backward decoder, respectively.

The final loss term of the proposed system is,

Lproposed = Lbase + Lbwd + Latt. (19)

The rationale behind the forward-and-backward decoding
is that RNNs are generally more accurate at the initial de-
coding time steps, but performance decreases as the predicted
sequence becomes longer because the prediction errors accu-
mulate due to the autoregression. By including two decoders
that model the input data in two different directions, and by
constraining them to produce similar attention weights, we
force the two decoders to incorporate information from both
the past and future, thus improving their modeling power.
Note that we only use both decoders during training. During
inference time, we keep either the forward or backward
decoder and discard the other. Therefore, the model size is
exactly the same as the baseline model.

D. WaveGlow vocoder

We use a WaveGlow vocoder [15] to convert the output
of the speech synthesizer back into a speech waveform.
WaveGlow is a flow-based [54] network capable of generating
high-quality speech from Mel-spectrograms. It takes samples
from a zero mean spherical Gaussian (with variance σ) with
the same number of dimensions as the desired output and
passes those samples through a series of layers that transform
the simple distribution to one that has the desired distribution.
In the case of training a vocoder, we use WaveGlow to
model the distribution of audio samples conditioned on a
Mel-spectrogram. During inference, random samples from the
zero-mean spherical Gaussian are concatenated with the up-
sampled (matching the speech sampling rate) Mel-spectrogram
to predict the audio samples. WaveGlow can achieve real-
time inference speed, whereas WaveNet takes a long time to
synthesize an utterance due to its auto-regressive nature. For
more details about the WaveGlow vocoder, we refer readers to
the original study by Prenger et al. [15], which also showed
that WaveGlow generates speech with quality comparable to
WaveNet.

IV. EXPERIMENTAL SETUP

For the FAC task (training the speech synthesizers, Wave-
Glow neural vocoders, and pronunciation-correction models),
we used one native speaker (BDL; American accent)8 from

8We chose to use BDL as the native speaker since our AM has reasonable
recognition accuracy on his speech (cf. Table I). If the AM were to perform
poorly on the native speaker, then the L1-GS utterances would include
more mispronunciations and therefore degrade the overall accent conversion
performance.
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CMU-ARCTIC corpus [55] and two non-native speakers
(YKWK, Korean; TXHC, Chinese) from the L2-ARCTIC
corpus9 [56]. We split the data from all speakers into non-
overlapping training (1032 utterances), validation (50 utter-
ances), and testing (50 utterances) sets. Recordings from BDL
were sampled at 16 kHz. Recordings in the L2-ARCTIC
corpus were resampled from 44.1 kHz to 16 kHz to match
BDL’s sampling rate and were pre-processed with Audacity
[57] to remove any ambient background noise. In all FAC
tasks, we extracted 80-dim Mel-spectrogram with a 10ms
shift and 64ms window size. All neural network models were
implemented in PyTorch [58] and trained with an NVIDIA
Tesla P100 GPU. In all experiments, we trained speaker-
dependent WaveGlow neural vocoders for L2 speakers using
the official implementation provided by Prenger et al. [15]10.

V. EXPERIMENTS AND RESULTS

We conducted two experiments to evaluate the proposed
FAC system on a thorough set of objective measures (e.g.,
word error rates, Mel Cepstral distortion) and subjective
measures (degree of foreign accent, audio quality, and voice
similarity). In experiment 1, we evaluated the reference-based
golden speaker (L1-GS) generated by the L2 speech synthe-
sizer (Section III-B). Then, in experiment 2, we evaluated
the reference-free golden speaker (L2-GS) produced by the
pronunciation-correction model (Section III-C).

A. Experiment 1: Evaluating the reference-based golden
speaker (L1-GS)

We constructed the following three systems and compared
their performance in generating L1-GS utterances. The ob-
jectives of this experiment were to determine the optimal
speech embedding, and more importantly, to establish that
L1-GS utterances captured the native accent and the L2
speaker identity, which is critical since they would be used as
targets for the reference-free FAC task. Details of the model
configurations and training are summarized in Appendix A.
• Senone-PPG: use the senone-PPG as the input (6,024

dimensions).
• Mono-PPG: use the monophone PPG as the input (346

dimensions).
• BNF: use the bottleneck feature vector as the input (256

dimensions).
To generate the L1-GS utterances for testing, we extracted

the three speech embeddings from speaker BDL’s test set
and drove the systems with their respective input. The output
Mel-spectrograms were then converted to speech through the
WaveGlow vocoders.

1) Objective evaluation: In a first experiment, we computed
the word error rate (WER) of L1-GS utterances synthesized
using each of the three speaker embeddings. In our case, the
speech recognizer consisted of the TDNN-F acoustic model
combined with an unpruned 3-gram language model trained on
the Librispeech transcripts. As a reference, we also computed

9https://psi.engr.tamu.edu/l2-arctic-corpus
10https://github.com/NVIDIA/waveglow

TABLE I
WORD ERROR RATES (%) ON TEST UTTERANCES AND THE ORIGINAL

SPEECH.

Senone-PPG Mono-PPG BNF Original speech
YKWK 37.56 23.30 9.50 45.82
TXHC 28.05 23.53 7.47 44.57

Average 32.81 23.42 8.49 45.20
BDL N/A 4.98

WERs on test utterances from the L1 speaker (BDL) and
the two L2 speakers (YKWK, TXHC). Results are summa-
rized in Table I. L1-GS utterances from the three systems
achieve lower WERs than the corresponding utterances from
the L2 speakers. Since the acoustic model had been trained
on American English speech, a reduction in lower WERs
can be interpreted as a reduction in the foreign-accentedness.
The BNF system performs markedly better than the other
two systems, achieving WERs that are close to those on
L1 utterances. The Senone-PPG system performed the worst,
despite the fact that it contains the most fine-grained triphone-
level phonetic information. We offer an explanation of this
result in the discussion.

2) Subjective evaluation: To further evaluate the three L1-
GS systems, we conducted formal listening tests to rate three
perceptual attributes of the synthesized speech: accentedness,
acoustic quality, and voice similarity. All listening tests were
conducted through the Amazon Mechanical Turk platform11.
Instructions were given in each test to help the participants
focus on the target speech attribute. All tests included five
calibration samples to detect cheating behaviors, as suggested
by Buchholz and Latorre [59]; responses from participants
who were deemed to have cheated were excluded. Ratings for
the calibration samples were excluded, too. All participants
received monetary compensation. All samples were randomly
selected from the test set, and the presentation order of
samples in every listening test was randomized and counter-
balanced. All participants resided in the United States at the
time of the recruitment and passed a qualification test where
they identified several regional dialects in the United States.
All participants were self-reported native English speakers.
All listening tests in this study have been approved by the
Institutional Review Board of Texas A&M University.

Accentedness test. Listeners were asked to rate the foreign
accentedness of an utterance on a nine-point Likert-scale (1:
no foreign accent; 9: heavily accented), which is used in the
pronunciation training community [60]. Listeners were told
that the native accent in this task was General American.
Participants (N=20) rated 20 randomly selected utterances
per system per L2 speaker. The utterances shared the same
linguistic content in all conditions to ensure a fair comparison.
As a reference, listeners also rated the same set of sentences
for the L1 and L2 speakers. The results are summarized in
the first row of Table II. L1-GS utterances from the three
systems were rated significantly (p � 0.001) more native-
like than the original L2 speech, though not as much as the

11https://www.mturk.com

https://psi.engr.tamu.edu/l2-arctic-corpus
https://github.com/NVIDIA/waveglow
https://www.mturk.com
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TABLE II
ACCENTEDNESS (THE LOWER, THE BETTER) AND MOS RATINGS (THE

HIGHER, THE BETTER) OF THE GOLDEN, NATIVE, AND NON-NATIVE
SPEAKERS; THE ERROR RANGES SHOW THE 95% CONFIDENCE INTERVALS;

THE SAME CONVENTION APPLIES TO THE REST OF THE RESULTS.

Senone-PPG Mono-PPG BNF Original L2 Original L1
Accentedness 6.01±0.26 5.48±0.19 4.30±0.16 6.77±0.20 1.04±0.04

MOS 3.43±0.13 3.54±0.09 3.78±0.05 3.70±0.06 4.63±0.06

TABLE III
VOICE SIMILARITY RATINGS. THE FIRST ROW SHOWS THE PERCENTAGE
OF THE RATERS THAT BELIEVED THE SYNTHESIS AND THE REFERENCE

AUDIO CLIP WERE PRODUCED BY THE SAME SPEAKER; THE SECOND ROW
IS THE AVERAGE RATING OF THESE RATERS’ CONFIDENCE LEVEL WHEN

THEY MADE THE CHOICE.

Senone-PPG Mono-PPG BNF
Prefer “same speaker” 70.00±9.12% 71.25±6.38% 73.75±6.46%

Average rater confidence 4.82 4.89 4.93

original L1 speech. Among the three systems, the BNF system
significantly outperformed Mono-PPG, while Mono-PPG was
rated significantly more native-like than Senone-PPG, all with
p� 0.001.

Acoustic quality. Listeners were asked to rate the acoustic
quality of an utterance using a standard five-point (1: poor;
2: bad; 3: fair; 4: good; 5: excellent) Mean Opinion Score
(MOS) [61]. Participants (N=20) listened to 20 randomly-
selected sentences per L2 speaker per system. As in the
accentedness test, listeners also rated the original utterances
from the L1 and L2 speakers. The results are summarized in
the second row of Table II. As expected, the original native
speech received the highest MOS. Among the three golden
speaker voices, BNF achieved the highest MOS compared with
the other two systems (p � 0.001). The Mono-PPG system
obtained better acoustic quality than the Senone-PPG system
(p = 0.045). Interestingly, L1-GS utterances from the BNF
system received higher MOS than the original L2 speech (3.78
vs. 3.70, p = 0.02), a surprising result for which we offer a
possible explanation in Section VI.

Voice similarity test. Listeners were presented with a pair
of speech samples –an L1-GS synthesis, and the original
utterance from the corresponding L2 speaker. In the test,
listeners first had to decide if the two samples were from the
same speaker, and then rate their confidence level on a seven-
point scale (1: not confident at all; 3: somewhat confident; 5:
quite a bit confident; 7: extremely confident) [1], [27]. To min-
imize the influence of accent, the two utterances had different
linguistic contents and were played in reverse, following [1].
For each system, participants (N=20) rated 10 utterance pairs
per speaker (20 utterance pairs for each system). Results are
summarized in Table III. Across the three systems, more than
70% of the listeners were “quite a bit” confident (4.82-4.93 out
of 7) that the L1-GS utterance and the original L2 utterance
had the same voice identity. Significance tests showed that
there was no statistically significant difference between the
preference percentages for the three systems.

These results show that the BNF system outperforms the
other two systems significantly in both objective and subjective

measures. Therefore, for the remainder of this manuscript,
we focus our evaluation on the BNF system, i.e., target L1-
GS utterances for the reference-free (pronunciation-correction)
system are those from the BNF system.

B. Experiment 2: Evaluating the reference-free golden speaker
(L2-GS)

In the second experiment, we directly converted L2 test
utterances with the proposed pronunciation-correction model
and compared it against the baseline systems. Detailed model
architecture configurations and training setups are included in
Appendix B.

• Baseline 1: the system of Zhang et al. [12], a state-of-
the-art VC system capable of modifying segmental and
prosodic attributes between different speakers. The loss
function of this system was eq. (16), i.e., Lbase.

• Baseline 2: the system of Liu et al. [41], the only other
reference-free accent conversion system that we are aware
of (cf. Section II-C). The audio samples were generated
by passing the test set utterances through the Liu system,
as prescribed in [41], which was pre-trained on 105
VCTK [62] speakers. The test samples were provided
as a courtesy by Liu et al., and we only performed two
post-processing steps to ensure a fair comparison. First,
we resampled the test samples provided by Liu et al.
from 22.05 kHz to 16 kHz to match the sampling rate
of the other systems. Second, we manually trimmed the
trailing white noises in some of the test samples. The
accent conversion model was pre-trained on VCTK not
L2-ARCTIC, which made its stop-token prediction not
stable, and some of the synthesized utterances have a few
seconds of white noise after the end of speech.

• Proposed (without att loss): the proposed system with-
out the attention loss term described in eq. (18). We
included this variation of the proposed system to study
the contribution of adding the backward decoder alone.
The loss function of this system was Lbase + Lbwd.

• Proposed: the proposed system with the full forward-
and-backward decoding technique, which included both
the backward decoder and the attention loss term. The
loss function of this system was eq. (19), i.e., Lbase +
Lbwd + Latt.

For both variations of the proposed system, we performed
accent conversion using the backward decoder during testing
since it produced significantly better-quality speech compared
to the forward decoder on the validation set. Please refer to
Appendix C for a qualitative comparison between the two
decoders.

1) Objective evaluations: For objective evaluations, we
computed three measures, as suggested by [12], plus WER
as a fourth:

• MCD: the Mel-Cepstral Distortion [28] between the L2-
GS (actual output) and L1-GS speech (desired output). It
was computed on time-aligned (Dynamic Time Warping)
Mel-cepstra between the L2-GS and the L1-GS audio.
Lower MCD correlates with better spectral predictions.
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TABLE IV
OBJECTIVE EVALUATION RESULTS OF THE REFERENCE-FREE FAC

SYSTEM (PRONUNCIATION-CORRECTION). THE FIRST ROW IN EACH
BLOCK SHOWS THE SCORES BETWEEN THE ORIGINAL L2 UTTERANCES

AND THE L1-GS UTTERANCES. THE LAST BLOCK SHOWS THE AVERAGE
VALUES OF THE FIRST TWO BLOCKS. FOR ALL MEASUREMENTS, A LOWER

VALUE SUGGESTS BETTER PERFORMANCE.

L2 speaker System WER (%) MCD (dB) F0 RMSE (Hz) DDUR (sec)

YKWK

Original 45.82 8.07 23.38 1.15
Baseline 1 41.31 6.26 18.43 0.18
Baseline 2 82.81 N/A

Proposed (w/o att loss) 36.12 6.16 19.41 0.14
Proposed 34.54 6.10 20.78 0.15
L1-GS 9.50 0.00 0.00 0.00

TXHC

Original 44.57 8.00 25.73 1.29
Baseline 1 43.67 6.32 19.40 0.17
Baseline 2 84.39 N/A

Proposed (w/o att loss) 40.05 6.26 22.33 0.15
Proposed 37.33 6.29 21.37 0.15
L1-GS 7.47 0.00 0.00 0.00

Average

Original 45.20 8.04 24.56 1.22
Baseline 1 42.49 6.29 18.92 0.18
Baseline 2 83.60 N/A

Proposed (w/o att loss) 38.09 6.21 20.87 0.15
Proposed 35.94 6.20 21.08 0.15
L1-GS 8.49 0.00 0.00 0.00

We used SPTK [63] and the WORLD vocoder [64] to
extract the Mel-cepstra with a shift size of 10ms.

• F0 RMSE: the F0 RMSE between the L2-GS and L1-
GS speech on voiced frames. Lower F0 RMSE represents
better pitch conversion performance. The F0 and voicing
features were extracted by the WORLD vocoder with the
Harvest pitch tracker [65].

• DDUR: the absolute difference in duration between the
L2-GS and L1-GS speech. Lower DDUR implies better
duration conversion performance.

• WER: the word error rate for the L2-GS speech. Ideally,
the L2-GS speech should have a lower WER than the
original non-native speech, implying that the conversion
reduced the foreign accent.

Results are summarized in Table IV. For all measures, we
also computed the scores between the original L2 speech and
the L1-GS speech as a reference. In addition, we included the
WER of the L1-GS speech as an upper-bound. By definition,
the other three measures on the L1-GS speech are all zero.
For Baseline 2, we only computed the WER since the system
was not trained to predict L1-GS, which makes computing the
other objective scores ill-defined.

The two variations of the proposed method obtained better
WER, MCD, and DDUR scores, while the Baseline 1 method
performed slightly better on the F0 RMSE. More importantly,
Baseline 1 and the two variations of the proposed method
were able to reduce the WER of the input L2 utterance.
The Proposed method (with attention loss) reduced WERs by
20.5% (relative) on average, which was significantly higher
than the WER reduction of the Baseline 1 system (6.0%
relative). Baseline 2 performed poorly on the WER metric.
Among the two variations of the proposed method, the one
that included both the backward decoder and attention loss
performed equally-well or better on the WER, MCD, and
DDUR scores.

TABLE V
ACCENTEDNESS (THE LOWER, THE BETTER) AND MOS (THE HIGHER,

THE BETTER) RATINGS OF THE REFERENCE-FREE ACCENT CONVERSION
SYSTEMS AND ORIGINAL L1 AND L2 UTTERANCES. THE L1-GS SCORES

ARE FROM THE BNF RESULTS IN TABLE II, WHICH SERVE AS AN
UPPER-BOUND FOR THIS EXPERIMENT, SINCE BASELINE 1 AND THE

PROPOSED SYSTEM USED THE L1-GS UTTERANCES AS THEIR TRAINING
TARGETS.

Baseline 1 Baseline 2 Proposed L1-GS Original L2 Original L1
Accentedness 5.56±0.23 6.04±0.31 5.33±0.28 4.30±0.16 6.58±0.26 1.07±0.04

MOS 2.95±0.12 2.86±0.12 3.22±0.10 3.78±0.05 3.68±0.10 4.80±0.06

TABLE VI
VOICE SIMILARITY RATINGS OF THE REFERENCE-FREE ACCENT

CONVERSION TASK. THE L1-GS SCORES ARE FROM THE BNF RESULTS IN
TABLE III, WHICH SERVE AS AN UPPER-BOUND FOR THIS EXPERIMENT,

SINCE BASELINE 1 AND THE PROPOSED SYSTEM USED THE L1-GS
UTTERANCES AS THEIR TRAINING TARGETS.

Baseline 1 Baseline 2 Proposed L1-GS
Prefer “same speaker” 69.25±11.08% 47.50±6.65% 73.00±7.55% 73.75±6.46%

Average rater confidence 5.00 4.57 5.12 4.93

2) Subjective evaluations: Following the same protocol
described in Section V-A2, we asked participants to rate
the accentedness, acoustic quality, and voice similarity of
synthesized L2-GS utterances. We used the samples from the
Proposed system (with the attention loss during training) based
on the objective evaluations in the previous section.

Accentedness test. Participants (N=20) rated 20 random
samples per speaker per system, as well as the corresponding
original audio. Results are compiled in the first row of Table V.
All systems obtained significantly more native-like ratings than
the original L2 utterances (p� 0.001). More specifically, the
Baseline 1 system reduced the accentedness rating by 15.5%
(relative) and the Baseline 2 system reduced the accentedness
rating by 8.2% (relative), while the Proposed system achieved
a 19.0% relative reduction, a difference that was statistically
significant (Proposed and Baseline 1, p = 0.04; Proposed and
Baseline 2, p � 0.001). As expected, the original L1 speech
was rated less accented than all other systems.

MOS test. Participants (N=20) rated 20 audio samples
per speaker per system. We used the same MOS test as in
experiment 1 to measure the acoustic quality of the synthesis.
Results are shown in the second row of Table V. The Proposed
system achieved significantly better audio quality than the
baselines (9.15% relative improvement compared with Base-
line 1; 12.59% relative improvement compared with Baseline
2; p� 0.001 in both cases).

Voice similarity test. Participants (N=20) rated 10 utterance
pairs per speaker per system (i.e., 20 utterance pairs for
each system). This last experiment verified that the accent
conversion retained the voice identity of the L2 speakers. The
results are shown in Table VI. For Baseline 1 and the Proposed
system, the majority of the participants thought the synthesis
and the reference speech were from the same speaker, and
they were “quite a bit confident” (5.00-5.12 out of 7) about
their ratings. Although the Proposed system obtained higher
ratings than the Baseline 1 system in terms of voice identity,
the difference between the preference percentages was not
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Fig. 6. A qualitative comparison of the attention weights generated by the
baseline and the proposed pronunciation-correction systems on one testing
utterance.

statistically significant (p = 0.12), which was expected. The
reason is that the input and output speech had different accents,
but very similar voice identity. Therefore, both systems were
not trained to modify the voice identity of the input audio.
As a result, both the Baseline 1 system and the Proposed
system were able to keep the voice identity unaltered during
the conversion process. The Baseline 2 system, on the other
hand, performed significantly worse than Baseline 1 and the
Proposed system in terms of voice similarity; on average,
47.5% of the participants thought that the synthesis and the
reference speech were from the same speaker, which is lower
than chance level, indicating that the syntheses produced by
Baseline 2 did not capture the voice identity of the L2 speakers
well. This result echoes with the findings of Liu et al. [41],
where they also identified voice identify issues of the Baseline
2 system.

Aside from the objective and subjective scores, we provide
an example of the attention weights produced by Baseline
1 and the Proposed system on a test utterance in Figure 6.
Qualitatively, we can observe that the attention weights of
the Baseline 1 system contained an abnormal jump towards
the end of the synthesis, while the Proposed system produced
smooth alignments at the same time steps. Additionally, the
Proposed method appears to have used a broader window to
compute the attention context compared with Baseline 1, as
reflected by the width of the attention alignment path. There-
fore, the Proposed system utilized more contextual information
during the decoding process.

VI. DISCUSSION

A. Experiment 1

In experiment 1, we tested three versions of the L1-GS
system that used different speech embeddings at the in-
put: senone-PPGs, monophone-PPGs, and bottleneck features
(BNFs). Both objective and subjective tests suggested that
the BNF system outperforms the other two, both in terms of
audio quality and native accentedness. Further, we find that
L1-GS utterances on the BNF system achieve similar WERs
as the original utterances from the L1 speaker, a remarkable
result that further supports the effectiveness of the system in
reducing foreign accents. The majority of the human raters

(73.75%) had high confidence that the BNF L1-GS shared the
same voice identity as the target L2 speaker, suggesting that
the accent conversion was also able to preserve the desired
(i.e., the L2 speaker’s) voice identity. A surprising result from
the listening tests is that BNF L1-GS utterances were rated
to have higher audio quality than the original natural speech
from the L2 speaker. Although this result speaks of the high
acoustic quality that the BNF L1-GS system is able to achieve,
it is likely that native listeners associated acoustic quality with
intelligibility, rating the original foreign-accented speech to be
of lower acoustic quality because of that; see Felps et al. [1].

Two probable factors explain why BNFs outperformed
the other two speech embeddings. First, during the training
process, we observed that the BNF system converges to
a better terminal validation loss. This result suggests that
the speech synthesizer can model Mel-spectrograms more
accurately using BNFs as the input rather than the other two
speech embeddings. Second, although BNFs and PPGs con-
tain similar linguistic information, the process that converted
BNFs to PPGs was a phoneme classification task. Therefore,
errors that do not exist in BNFs may occur in PPGs due
to the enforcement of the extra classification step. Those
additional classification errors are then translated to the speech
synthesizer as mispronunciations and speech artifacts. One
possible explanation for differences between the two PPGs is
dimensionality reduction strategies; the monophone-PPG sys-
tem used an empirical rule (reducing senones to monophones)
to summarize the high-dimensional senone-PPG, while the
senone-PPG system constructed a learnable transformation
(an input PreNet). Although it is possible for data-driven
transforms to outperform empirical rules given enough data,
the limited amount of data (∼one hour of speech per speaker)
available for the FAC task was probably not enough to produce
a good transformation for senone-PPGs.

B. Experiment 2

In experiment 2, we achieved reference-free FAC by con-
structing a pronunciation-correction model that converted L2
utterances directly to match the L1-GS. Our results are en-
couraging; both the baseline model of Zhang et al. [12]
(Baseline 1) and our proposed system were able to reduce
the foreign accentedness of the input speech significantly,
while retaining the voice identity of the L2 speaker. More
importantly, the proposed system outperformed the Baseline 1
system significantly in terms of MOS and accentedness ratings.
A possible explanation for this result is that the proposed
method computes the alignment between each pair of input
and output sequences from two directions at training time.
Thus, by forcing the forward and the backward decoders to
produce similar alignment weights, we force the decoders
to incorporate information from both the past and future
when generating the alignment. During inference time, only
one decoder is needed to perform the reference-free accent
conversion; therefore, the proposed system consumes exactly
the same amount of inference resources as the baseline system.
In summary, the better accentedness and audio quality ratings
obtained by the proposed system can largely be attributed to
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the better alignments provided by the forward-and-backward
decoding training technique, as illustrated in Figure 6. The pro-
posed system also outperformed a state-of-the-art reference-
free FAC system by Liu et al. [41] (Baseline 2) in all objective
and subjective evaluation metrics. The comparison of the
proposed method and Baseline 2 shows that there is still a
large performance gap between a speaker-specific reference-
free FAC system (the proposed method) and a many-to-many
reference-free FAC system (Baseline 2), which encourages
future work in both areas.

The L2-GS generated by the reference-free FAC was rated
as significantly less accented than the L2 speaker, though it
still had a noticeable foreign accent compared with the original
L1 speech. This suggests that the pronunciation-correction
model did not fully eliminate the foreign accent in heavily
mispronounced or disfluent speech segments, and therefore
some foreign-accent cues from the input were carried over to
the output speech. One likely explanation for this result is that
the proposed reference-free FAC model can only correct error
patterns that have occurred in the training data. Due to the
high variability of L2 pronunciations, the amount of training
data available for each L2 speaker (∼one hour of speech)
was not sufficient to cover a portion of the error patterns
manifested in the test data, and therefore those errors were not
corrected and resulted in the residual foreign accents in the L2-
GS utterances. Finally, the MOS ratings of the pronunciation-
correction models were lower than those of the BNF L1-GS,
which was expected since the output of the pronunciation-
correction model is a re-synthesis of the L1-GS utterances.

VII. CONCLUSION AND FUTURE WORK

In this work, we propose a new reference-free FAC system12

that transforms input L2 utterances to reduce their foreign
accentedness. This is in contrast to the majority of the existing
FAC systems, which require native reference utterances at
inference time. Training the system requires two steps. In a
first step, we train a FAC model to transform utterances from
a reference L1 speaker, so they have the voice identity of
the L2 learner. We refer to these transformed utterances as
L1-GS utterances. In a second step, we train a pronunciation-
correction model that can transform utterances from the L2
learner to match the L1-GS utterances obtained in the first step.
Our evaluations indicate that the reference-free FAC system
can significantly reduce the foreign accentedness in L2 speech
while retaining the voice identity.

One possible future direction of this work is to use transfer
learning [66] to reduce the amount of training data needed
for the golden-speaker generation process. This would require
first training a multi-speaker speech synthesizer with speech
embeddings and speaker embeddings (e.g., i-vectors) as the
input, then performing inference using speech embeddings
from the reference L1 speaker and the speaker embeddings
from the L2 speaker. The benefit of this strategy is that training
a multi-speaker speech synthesizer generally only requires a
small number of recordings from a particular speaker (e.g., the
L2 speaker).

12Project webpage: https://guanlongzhao.github.io/demo/reference-free-ac

Another future research direction is to improve the quality
of the pronunciation-correction model. A direct extension of
the current system that might improve the audio quality is
to jointly optimize the pronunciation-correction model and
the neural vocoder. The current setup of the system trains
the WaveGlow model with “clean” original Mel-spectrograms,
which leads to a mismatch between the output of the
pronunciation-correction model (synthetic Mel-spectrogram)
and the expected input of the neural vocoder. Another pos-
sibility for quality improvement is to directly convert between
foreign-accented and native speech embeddings to correct
the mispronunciations. This seems feasible since the speech
embeddings (e.g., BNFs) contain rich classifiable phonetic
information, which is decoupled from other speaker-specific
cues that might interfere with the correction process. The
benefits of this approach are two-fold. First, it would eliminate
the need to generate the L1-GS, since we can directly use
the speech embeddings from L1 teachers as training targets.
Second, by combining data from speakers that share the same
foreign accent, this approach would enable us to train specific
pronunciation-correction models for each first language (e.g.,
for Chinese L2 learners of English) that can cover more
mispronunciation variations compared with speaker-dependent
models, as we have done in this current work, thus improving
the accentedness ratings of the syntheses. Finally, we intend to
study other simpler attention regularization techniques [67] as
alternatives to the forward-and-backward decoding technique
used in this work. A simpler attention regularization technique
would help the pronunciation-correction model lower its train-
ing cost.
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APPENDIX A
MODEL DETAILS OF THE SPEECH SYNTHESIZERS

Table VII summarizes the neural network architectures of
the three speech synthesizers. It is worth noting that the input
PreNet produced a 512-dim summarization from the Senone-
PPG, which is higher than the dimensionality of the Mono-
PPG and BNF. We did experiment on a lower dimensionality
(256) in the input PreNet, which lead to significant artifacts
and mispronunciations. Therefore, we used the current setting
for the Senone-PPG system in order to generate intelligible
speech syntheses to compare with the other two systems.

The models were trained using the Adam optimizer [68]
with a constant learning rate of 1 × 10−4 until convergence,
which was monitored by the validation loss. We applied a
1 × 10−6 weight decay [69] and a gradient clipping [70] of
1.0 during training. The batch size was set to 8 and the weight
terms w1 and w2 in eq. (13) were set to 1.0 and 0.005, based
on preliminary experiments [27].

TABLE VII
NEURAL NETWORK ARCHITECTURE OF THE SPEECH EMBEDDING TO

MEL-SPECTROGRAM SYNTHESIZERS.

Component Parameters

Input-dim 6024 (Senone-PPG); 346 (Mono-PPG); 256
(BNF)

Input PreNet (Senone-PPG only)
Two fully connected (FC) layers, each has 512
ReLU units, 0.5 dropout [71] rate
Output-dim: 512

Convolutional layers

Three 1-D convolution layers (kernel size 5)
Batch normalization [72] after each layer
Output-dim: 512 (Senone-PPG); 346 (Mono-
PPG); 256 (BNF)

Encoder
One-layer Bi-LSTM, 256 cells in each direc-
tion
Output-dim: 512

Decoder PreNet
Two FC layers, each has 256 ReLU units, 0.5
dropout rate
Output-dim: 256

Attention LSTM One-layer LSTM, 0.1 dropout rate
Output-dim: 512

Attention layers v in eq. (5) has 256 dims; eq. (6), k = 32,
r = 31; eq. (10), w = 20

Decoder LSTM One-layer LSTM, 0.1 dropout rate
Output-dim: 512

PostNet

Five 1-D convolution layers (kernel size 5), 0.5
dropout rate
512 channels in first four layers and 80 chan-
nels in last layer
Output-dim: 80

TABLE VIII
NEURAL NETWORK ARCHITECTURE OF THE BASELINE

PRONUNCIATION-CORRECTION MODEL.

Component Parameters
Input layer 80-dim Mel-spectrum + 256-dim BNF

Encoder

Two-layer Pyramid Bi-LSTM, 256 cells / di-
rection / layer
Frame sub-sampling rate: 2
With layer normalization [73]
Output-dim: 512

Decoder PreNet
Two FC layers, each has 256 ReLU units, 0.5
dropout rate
Output-dim: 256

Attention mechanism

One-layer LSTM
Forward-attention technique [51] for attention
weights
Output-dim: 512

Decoder LSTM One-layer LSTM
Output-dim: 512

PostNet

Five 1-D convolution layers (kernel size 5), 0.5
dropout rate
512 channels in first four layers and 80 chan-
nels in last layer
Output-dim: 80

Input Phoneme Classifier One FC layer + softmax
Output-dim: 346

Output Phoneme Classifier One FC layer + softmax
Output-dim: 346

APPENDIX B
MODEL DETAILS OF THE

PRONUNCIATION-CORRECTION MODELS

Table VIII summarizes the model details of the Baseline
1 pronunciation-correction model. On top of the Baseline 1
model, the Proposed model adds a backward decoder that
has the same structure (attention modules, decoder LSTM,
and decoder PreNet) as the Baseline 1 model’s decoder.
The phoneme prediction ground-truth labels were per-frame

http://www.audacityteam.org/
http://sp-tk.sourceforge.net/
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Fig. 7. A qualitative comparison of the attention weights generated by the
forward and backward decoders of the proposed pronunciation-correction
systems on three utterances from the validation set.

phoneme labels (with word positions) that were produced
by force-aligning the audio to its orthographic transcriptions.
We note that the phoneme predictions were only required
in training, not testing. For both models, the training was
performed with the Adam optimizer with a weight decay of
1 × 10−6 and a gradient clip of 1.0. The initial learning rate
was 1 × 10−3 and was kept constant for the first 20 epochs,
then exponentially decreased by a factor of 0.99 at each epoch
for the next 280 epochs, and then kept constant at the terminal
learning rate. The batch size was 16. The loss term weights
w1, w2, w3, and w4 in equations (16)-(19) were empirically
set to 1.0, 0.05, 0.5, and 100.0.

APPENDIX C
QUANTITATIVE COMPARISON BETWEEN THE

FORWARD AND BACKWARD DECODER OF THE
PROPOSED SYSTEM

As a qualitative comparison between the forward and back-
ward decoder in the proposed system, we plot the attention
weights generated by both decoders on a few utterances from
the validation set. Good alignment of the attention weights

generally indicates better performance. We can see in the fig-
ures that the backward decoder produces attention weights that
have less discontinuity, which may explain why the backward
decoder generates speech with better quality compared to the
forward decoder.
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