
USM-SCD: MULTILINGUAL SPEAKER CHANGE DETECTION BASED ON LARGE
PRETRAINED FOUNDATION MODELS

Guanlong Zhao, Yongqiang Wang, Jason Pelecanos
Yu Zhang, Hank Liao, Yiling Huang, Han Lu, Quan Wang

Google LLC, USA
{guanlongzhao,yqw,pelecanos,ngyuzh,hankliao,yilinghuang,luha,quanw}@google.com

ABSTRACT

We introduce a multilingual speaker change detection model (USM-
SCD) that can simultaneously detect speaker turns and perform ASR
for 96 languages. This model is adapted from a speech foundation
model trained on a large quantity of supervised and unsupervised
data, demonstrating the utility of fine-tuning from a large generic
foundation model for a downstream task. We analyze the perfor-
mance of this multilingual speaker change detection model through
a series of ablation studies. We show that the USM-SCD model can
achieve more than 75% average speaker change detection F1 score
across a test set that consists of data from 96 languages. On Amer-
ican English, the USM-SCD model can achieve an 85.8% speaker
change detection F1 score across various public and internal test
sets, beating the previous monolingual baseline model by 21% rel-
ative. We also show that we only need to fine-tune one-quarter of
the trainable model parameters to achieve the best model perfor-
mance. The USM-SCD model exhibits state-of-the-art ASR quality
compared with a strong public ASR baseline, making it suitable to
handle both tasks with negligible additional computational cost.

Index Terms— Speaker change detection, foundation model

1. INTRODUCTION

Speaker change detection (SCD) [1] is the process of identifying
the speaker turn points in a multi-speaker audio stream. SCD has
broad applications in enhancing speaker diarization accuracy [2, 3],
improving Automatic Speech Recognition (ASR) quality [4], gen-
erating line breaks in captions to boost readability and accessibil-
ity [5], and augmenting textual prompts for multi-modal large lan-
guage models (LLMs) [6].

Conventionally, SCD is achieved by using a neural network to
map acoustic features or speaker embeddings [7–9] to a frame or
segment level yes/no speaker change prediction. The neural network
is generally trained by minimizing the binary cross entropy loss be-
tween the ground-truth SCD labels and the predictions. These con-
ventional approaches have various limitations. First, they require ac-
curate timing information of the speaker change point, which is dif-
ficult to obtain since marking speaker change timestamps is a highly
subjective process for human annotators. Second, the methods that
use purely acoustic information ignore rich semantic information in
the audio. Third, the methods that use speaker embeddings utilize
sensitive biometric information that can be exploited for unintended
purposes and are sub-optimal from a privacy point of view [10].

A few recent studies [2, 11, 12] explore using ASR-based ap-
proaches to detect word-level speaker changes to mitigate the afore-
mentioned issues with conventional models. Xia et al. [2] propose an

SCD model using a Transformer-Transducer (T-T). Specifically, they
augment the text transcription of the spoken utterance with a special
speaker turn token <st>, and then train the model to output both
regular text tokens and the special speaker turn token. This model
does not need accurate timestamps for training since the T-T model
is trained in a seq2seq fashion and does not need forced-alignment
to provide training targets. The model also utilizes both acoustic and
linguistic information in the input audio. As a follow up of that work,
in [11] we propose a training loss that penalizes speaker change false
acceptance and false rejection errors in the N-best hypotheses to fur-
ther enhance performance. Wu et al. [12] add an additional SCD
module on top of an existing T-T ASR network to optimize the SCD
and ASR tasks separately.

Recent advances in self-supervised learning have ushered in a
new era for speech tasks. Large pretrained foundation models [13]
have led to significant performance improvement in various down-
stream speech tasks including emotion recognition [14], language
identification [15], voice activity detection [16], and mispronunci-
ation detection [17]. In this work we take advantage of the recent
Google Universal Speech Model (USM) [18] framework to build an
SCD model that is capable of recognizing speaker changes in 96
languages. In addition, the performance of prior ASR-based mod-
els is limited by the quantity of supervised SCD data available for
individual languages, leading to lower performance. We explore the
benefit of using a large quantity of unsupervised and supervised mul-
tilingual ASR data for model pretraining. The major contributions
of this paper include (1) a 96-language SCD model that significantly
outperforms the previous monolingual baseline; (2) detailed ablation
studies of the proposed multilingual SCD model.

2. METHOD

First, we build a pretrained model as the foundation model. We then
fine-tune the foundation model with data annotated with speaker
changes.

2.1. Backbone model

At a high level, the backbone model architecture used in this work
consists of a Conformer encoder [19] and a Connectionist Temporal
Classification (CTC) [20] decoder. The inputs are mel-spectra fea-
tures and a one-hot vector representing the language of the utterance.

We pass the input features through mean variance normalization,
SpecAugment [21] (only for training), and multiple 2D-convolution
layers (denoted as the feature encoder) to reduce the input frame
rate, similar to the setup in wav2vec 2.0 [22]. We then append the
features with a one-hot language embedding. The concatenated fea-
tures are then projected by a linear input projection layer to match

ar
X

iv
:2

30
9.

08
02

3v
3

 [
ee

ss
.A

S]
 6

 J
an

 2
02

4

the dimension of the Conformer encoder, which takes the projection
layer outputs as its inputs. The Conformer encoder is trained with
chunk-wise attention [18]. The output of the Conformer encoder is
passed to a linear projection layer, outputting logits that correspond
to WordPiece tokens. The model is trained with the CTC loss. We do
not use the RNN-T paradigm [23] in this work due to its slow train-
ing speed as a result of its auto-regressive nature, which is especially
prevalent when training large models with billions of parameters.

2.2. Pretraining

There are various pretraining techniques. In this work, we explore
both supervised and unsupervised pretraining methods.

2.2.1. BEST-RQ pretraining

We select BEST-RQ [24] as the unsupervised method to pretrain our
networks. BEST-RQ provides a simple framework with a small num-
ber of hyperparameters for unsupervised training on large-scale un-
labeled audio data. BEST-RQ applies a random-projection quantizer
to map speech signals to discrete labels to enable BERT-style pre-
training for ASR encoders. The quantizer randomly initializes a ma-
trix and a codebook, and uses the matrix to project the input speech
signals and the codebook to find the nearest vector, where the index
of the vector serves as the label. The pretraining process masks the
speech signals and feeds them to the ASR encoder that learns to pre-
dict labels of the masked segment. The random projection performs
dimension reduction for the speech signals while the random code-
book provides an approximated discrete representation of the data
distribution. Both the randomly initialized matrix and codebook are
fixed during the pretraining process. In this study, the encoder in
the BEST-RQ system employs the same model architecture as the
Conformer encoder described in Sec. 2.1.

2.2.2. ASR pretraining

For supervised pretraining, we initialize the Conformer encoder’s
weights from the BEST-RQ model’s encoder and fine-tune it on ASR
data to predict text from audio.

2.3. SCD fine-tuning

For the SCD task, we fine-tune the pretrained model with speaker
change data, and we refer to this type of model as USM-SCD.

We warm start the backbone model’s Conformer encoder from a
pretrained model’s encoder. The decoder projection layer is always
randomly initialized. The training targets are WordPiece tokens aug-
mented with speaker change annotations. To create training targets,
we add a special speaker change token <st> between two differ-
ent speakers’ transcripts (e.g. “hello how are you <st> I am good
<st>”) to model speaker changes during training. Compared with
audio-only SCD models [8], this model may more directly utilize
the language semantics as a signal for speaker segmentation. For
inference, we perform an ASR decoding with the SCD model, and
identify the speaker change tokens. We use the timestamps of the
predicted speaker turn tokens in the evaluation.

2.4. Speaker change token posterior scaling

The speaker change tokens are relatively scarce in the training data.
To encourage the model to output speaker change tokens, we can ap-
ply a scaling factor to the posterior probability of the speaker change
token p(<st>|X) during decoding, where X is the model input. As-
suming greedy decoding (see section 3.2 of [20]) during inference,

Tmin Tmax
Spk A

Spk B

Spk C

Ref SC 1 2 3 4 5 6

1Hyp SC 3 4 5 62

Score ✔ FA FR FR FR Drop

NOT a turn

✔ ✔ ✔

Fig. 1: Illustration of the SCD scoring mechanism for computing the
precision, recall, and F1. “Spk A-C” stands for speaker annotations
on a conversational utterance. “Ref SC” is the reference speaker
change intervals. “Hyp SC” is the predicted speaker change. “Score”
shows the scoring decision of each prediction and reference.

this can be achieved by multiplying p(<st>|X) with a constant fac-
tor λ > 1, i.e., p′(<st>|X) = λ · p(<st>|X). Effectively this
increases the posterior probability of the <st> token. Greedy de-
coding simplifies the process since we do not need to redistribute
the rest of the probability mass as a result of the scaling. In prac-
tice, we operate on the log posterior probability rather than on the
raw posterior probability to avoid numerical issues, hence we have
log(p′(<st>|X)) = log(λ) + log(p(<st>|X)).

2.5. SCD evaluation metrics

For SCD evaluation, we compute precision (percentage of model
predictions that are true speaker changes), recall (percentage of
ground-truth speaker changes that are correctly predicted by the
model), and F1 score (the harmonic mean of the precision and re-
call). We treat the F1 score as a more comprehensive quality metric
than the precision/recall rate alone. To compute these metrics, we
align predicted and ground-truth speaker changes based on their
timestamps, i.e., correct predictions should overlap with the ground-
truth labels. Please refer to Fig. 1 for an example. For a detailed
description of these metrics, please see Sec. 3 of [11].

3. EXPERIMENTAL SETUP

3.1. Data

We use various supervised and unsupervised short/long-form data
across model training and evaluation. All internal datasets are col-
lected according to Google’s Privacy Principles [25] and abide by
Google AI Principles [26].

3.1.1. Training

YT-56-U: This dataset is built by first randomly collecting three mil-
lion hours of audio from “speech-heavy” user-uploaded YouTube
videos, filtered by user-provided language tags. The three million
hours of audio is then further segmented by a Voice Activity De-
tection (VAD) model and non-speech segments are removed. This
yields approximately one million hours of unlabeled audio data.
Later, we use a language identification model to select data that
corresponds to 56 languages from that unlabelled audio data. We use
this dataset to pretrain the BEST-RQ model.

VS-SUP: We use a Voice Search dataset consisting of 85 lan-
guage locales to pretrain the ASR model. There are a total of 1.2
billion short utterances (average duration 4 seconds) from Voice
Search traffic. The data is anonymized and human transcribed. No
speaker change information is available for this dataset. We use this

Table 1: Statistics of additional internal and public En-US test sets.

Testset Domain Dur. (h) Average

Turns/min Duration/Utt. (min)

AMI [28] Meeting 9.1 10 34
Callhome [29] Telephone 1.7 19 5
DIHARD1 [30] Mixed 16.2 12 9

Fisher [31] Telephone 28.7 13 10
ICSI [32] Meeting 2.8 13 55
Inbound Telephone 21.0 9 5

Outbound Telephone 45.6 13 6

dataset for ASR pretraining because short-form supervised ASR
training data is significantly larger in volume than long-form data
with speaker change labels.

YT-SUP: This is a dataset with audio from YouTube videos that
has text transcripts and speaker change labels from 96 languages.
We group consecutive segments into a longer unit similar to [27].
The maximum sequence length for training is 30 seconds. The to-
tal quantity of training data is 108k hours, ranging from three hours
(Paraguayan Guarani) to 4k hours (Brazilian Portuguese) across lo-
cales. We use this dataset to fine-tune the USM-SCD model.

3.1.2. Evaluation

YT-96-Eval: For all languages, we have in total 1,400 hours of in-
ternal YouTube long-form evaluation data (no overlap with YT-56-U
or YT-SUP) annotated with text transcriptions and speaker changes.
On average, we have 15.2h (std: 4.5h) of evaluation data per lan-
guage and 5 speaker changes per minute of audio in this test set.

En-US-Eval: For American English (En-US), we have addi-
tional internal and public test sets, see Table 1. For the first DIHARD
challenge evaluation subset (DIHARD1), we remove all YouTube-
derived utterances to avoid evaluating on utterances that might have
appeared during training. For Fisher, we randomly sample a sub-
set of 172 utterances for testing1. “Outbound” and “Inbound” are
vendor-provided call center telephone conversations between call
center operators and customers, initiated by the call center and by
customers, respectively. “Outbound” and “Inbound” were previ-
ously used in [2, 3, 11].

3.2. Modeling details

We extract 128-dim log-mel filter-bank energies from a 32ms win-
dow with a 10ms frame shift as the raw input feature to the model.
We use a WordPiece model that has a vocabulary size of 16,384.

The feature encoder contains two 2D-convolution layers of
shape 3×3×1×128 and 3×3×128×32 (time×frequency×input-
channel×output-channel), respectively. The stride size of both con-
volution layers is 2 on both the time and frequency dimensions. The
feature encoder increases the frame rate by 4-fold (i.e., down-sample
the frames by 4-fold), from 10ms to 40ms, resulting in a 1,024-dim
feature vector. The multi-headed self-attention in the Conformer
layers has 8 attention heads. The chunk-wise attention in the Con-
former encoder has an 8s context. The convolution kernel size is 5.
We run experiments on a model with 1.84 billion parameters, where
we have 32 Conformer layers and each layer has 1,536 dimensions.

We use the Adafactor optimizer [33] with a transformer learning
rate schedule. For fine-tuning tasks, we optimize the encoder and
decoder with separate optimizers and learning rate schedules given
that the encoder alone has been pretrained. For the encoder, we use
a peak learning rate 3× 10−4 with 6k warm-up steps, while for the

1https://github.com/google/speaker-id/blob/master/
publications/ScdLoss/eval/fisher.txt

Table 2: Overall system comparisons on YT-96-Eval. The w/ SCD
systems are fine-tuned from the corresponding pretrained models
with speaker change tokens in the training target; the w/o SCD sys-
tem is trained to perform only ASR.

BEST-RQ Pretrain ASR Pretrain ASR Pretrain Whisper
w/ SCD w/ SCD w/o SCD large-v2

WER
En-US 17.1 12.6 12.6 16.2

21-lang. 21.1 16.6 16.6 30.1
96-lang. 34.3 30.1 28.8 -

SCD
Precision 80.0 82.4 - -

Recall 52.6 51.9 - -
F1 63.5 63.7 - -

decoder projection layer we use a peak learning rate 5 × 10−4 and
2k warm-up steps. Training was done with a global batch size of
4,096 on TPUs [34]. We monitor the training process on a held-
out development set. For all models, we train them for around 40k
steps. Empirically [35], fine-tuning from a well-trained foundation
model only requires a small fraction of training steps compared with
training from scratch. In this study, we observe that the model can
converge to a reasonable state with as few as 5k training steps, which
takes about 6.5 hours of training time with the aforementioned setup.

4. RESULTS

We compute the WER (for ASR) and SCD precision, recall, and
F1 rates as quality metrics. For all evaluations, unless otherwise
specified, we use greedy search and aggregate the evaluation data
from all 96 languages (YT-96-Eval) to compute the final scores. For
WER, we remove speaker change tokens from the scoring.

4.1. Overall system comparisons on YT-96-Eval

We first study the choice of the pretrained model. The results are
summarized in the first two columns of Table 2. The SCD models
fine-tuned from the two pretrained models yield comparable SCD F1
scores (0.3% relative difference), suggesting that they are compara-
ble in terms of detecting speaker change events. The SCD model
fine-tuned from the ASR model has significantly better WER (30.1
vs 34.3 across 96 languages; a 12.2% relative reduction), demon-
strating the benefit of ASR-pretraining on the word-level SCD task.

Next, we study the trade off between ASR and SCD. We fine-
tune from the ASR-pretrained checkpoint to construct ASR Pretrain
w/o SCD that does not have the speaker change token in the training
target, resulting in a WER of 28.8%. Therefore, with the proposed
approach, adding the SCD capability to the ASR model would result
in a 4.5% relative WER regression.

To provide additional context, we compare the WER of the
USM-SCD model with a strong publicly available ASR model
Whisper [36] (large-v2, 1.55B parameters) that was trained on more
than 400k hours of transcribed ASR data. We select 21 top perform-
ing languages from Whisper (which achieve WER lower than 40%
on YT-96-Eval), and the results are shown in the last column of
Table 2. We observe that although adding the SCD capability to an
ASR model hurts the WER, the resulting USM-SCD model still has
a better ASR performance on YouTube data compared to Whisper.

4.2. Effect of sub-components to fine-tune

We now study which model parameters to fine-tune. For this exper-
iment, we always fine-tune from the ASR pretrained model given
the results in Sec. 4.1. Given that we are using a different data
source (i.e., YT-SUP) for SCD training and we modify the training
targets, we always fine-tune the feature encoder, input projection,

https://github.com/google/speaker-id/blob/master/publications/ScdLoss/eval/fisher.txt
https://github.com/google/speaker-id/blob/master/publications/ScdLoss/eval/fisher.txt

Table 4: En-US results based on En-US-Eval. DIHARD1 and In/Outbound do not have ground-truth text transcripts. The last column shows
the evaluation metrics computed by pooling all test sets together.

Metrics System AMI CallHome DIHARD1 Fisher ICSI Inbound Outbound Pooled data

WER SCD loss 39.8 33.0 - 30.6 46.1 - - 33.5
USM SCD 25.7 18.6 - 18.4 31.5 - - 20.7

Precision SCD loss 79.4 82.0 78.8 82.6 77.8 72.8 75.1 77.6
USM SCD 91.6 84.6 92.9 94.7 90.2 94.4 91.9 90.8

Recall SCD loss 68.1 59.1 52.4 75.7 58.7 79.2 58.7 65.2
USM SCD 75.3 90.8 81.7 76.5 82.7 70.1 87.3 81.4

F1 SCD loss 73.3 68.7 62.9 79.0 66.9 75.9 65.9 70.9
USM SCD 82.6 87.6 86.9 84.6 86.3 80.5 89.5 85.8

Table 3: Effect of the choice of model parameters to fine-tune. The
decoder and input processing layers are always fine-tuned (27M pa-
rameters). Evaluated on YT-96-Eval.

Fine-tuned # Params WER Precision Recall F1Enc. layers Trained

First 4 254M 35.9 83.8 35.6 50.0
Last 4 254M 30.4 82.2 44.6 57.8

First 4 & last 4 480M 30.1 84.0 52.5 64.6
All 1.84B 30.1 82.4 51.9 63.7

Fig. 2: SCD token <st> posterior probability scaling results on YT-
96-Eval.

and decoder projection layers, which consist of 27M trainable pa-
rameters. A preliminary experiment suggests that only fine-tuning
the feature encoder, input projection, and decoder projection layers
does not converge well. Therefore, we selectively fine-tune certain
layers of the Conformer encoder and freeze the rest of the param-
eters. All models are trained for 40k steps. The results are in Ta-
ble 3. We observe that optimizing the last 4 layers is significantly
better than optimizing the first 4 layers both in terms of WER and
SCD metrics. Interestingly, optimizing both the first 4 and last 4 lay-
ers (i.e., 8 of 32 layers) gives the best ASR and SCD performance,
which only accounts for ∼26% of the trainable parameters.

4.3. Effect of the speaker change token posterior scaling

Next, we study the effect of the speaker change token posterior scal-
ing factor (cf. Sec. 2.4). Based on the results in Sec. 4.2, we use
the model that is only fine-tuned on the first 4 and last 4 layers of
the Conformer encoder (480M trainable parameters). We run exper-
iments (see Fig. 2) by setting the factor λ from 1.0 to 9.0, with a step
size of 1.0. Note that this experiment does not require retraining the
model since the posterior scaling happens during inference. We ob-
serve that the posterior scaling does not significantly affect the ASR
quality, with the maximum WER difference being less than 0.7%
relative (i.e., from 30.1% to 30.3%). More importantly, the scaling

factor brings large gains in terms of SCD quality. Compared with
the baseline configuration where there is no SCD posterior scaling
(i.e., scaling factor 1.0), the best posterior scaling factor of 5.0 in-
creases the SCD F1 score from 64.6% to 75.3%, a 16.6% relative
improvement.

4.4. En-US quality analysis

For En-US, there are additional internal and public datasets that have
speaker change labels (Table 1). We evaluate the USM-SCD model
fine-tuned from ASR on these datasets. We only fine-tune the first
4 and last 4 Conformer encoder layers, and the SCD posterior scal-
ing factor is set to 5.0 during inference. The per-testset results are
summarized in Table 4. We also include the best performing system
from [11] (denoted as SCD loss, 27M parameters monolingual En-
US model) as a comparison. The SCD loss system is trained with
an SCD-optimized training loss on a super-set of the En-US portion
of YT-SUP, with 2k hours of additional training data from other do-
mains. We observe that the USM-SCD system performs much better
than the SCD loss system, achieving 21% relative F1 score improve-
ment. The precision and recall rates increase by 17.0% and 24.8%
relative, respectively.

5. DISCUSSION AND CONCLUSION

In this work we propose a multilingual SCD model that supports 96
languages. We take advantage of recent advances in large speech
foundation models to construct this USM-SCD model and study its
properties through a series of ablation studies. We find that ASR-
pretraining is crucial to model performance. We observe that we
only need to fine-tune roughly one-quarter of the trainable parame-
ters to achieve the best overall performance compared to fine-tuning
all parameters. We also show that an inference-time SCD token pos-
terior scaling that requires no additional computation can result in a
16.6% relative improvement in the SCD F1 score. Finally, compared
with our previous monolingual En-US SCD model, the USM-SCD
model outperforms it by 21% in terms of SCD F1 score. Based on
benchmarks on TPU v5e [37], the USM-SCD model can run infer-
ence at 60x faster than real-time (batch size 1), demonstrating the ap-
plication potential of this model. Possible future directions include
replacing the CTC architecture with a fast RNN-T implementation
and applying the token-level training loss proposed in [11] to further
boost model quality. It is also interesting to explore multi-output
RNN-T joint networks [38] to decouple the ASR and SCD tasks.

6. ACKNOWLEDGEMENTS

The authors would like to thank Wei Han for the Whisper model
evaluation setup, and Olivier Siohan, Parisa Haghani, Ignacio Lopez
Moreno, and Pedro Moreno Mengibar for reviewing this work.

7. REFERENCES

[1] Jitendra Ajmera, Iain McCowan, and Hervé Bourlard, “Robust
speaker change detection,” IEEE Signal Processing Letters,
vol. 11, no. 8, pp. 649–651, 2004.

[2] Wei Xia, Han Lu, et al., “Turn-to-diarize: Online speaker di-
arization constrained by transformer transducer speaker turn
detection,” in Proc. ICASSP, 2022, pp. 8077–8081.

[3] Quan Wang, Yiling Huang, et al., “Highly efficient real-time
streaming and fully on-device speaker diarization with multi-
stage clustering,” arXiv:2210.13690, 2022.

[4] Leda Sari, Mark Hasegawa-Johnson, and Samuel Thomas,
“Auxiliary networks for joint speaker adaptation and speaker
change detection,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 29, pp. 324–333, 2020.

[5] Gregor Donabauer, Udo Kruschwitz, and David Corney,
“Making sense of subtitles: Sentence boundary detection and
speaker change detection in unpunctuated texts,” in Compan-
ion Proceedings of the Web Conference, 2021, pp. 357–362.

[6] Maria Tsimpoukelli, Jacob L Menick, et al., “Multimodal few-
shot learning with frozen language models,” Advances in Neu-
ral Information Processing Systems, 2021.

[7] Marek Hrúz and Zbyněk Zajı́c, “Convolutional neural network
for speaker change detection in telephone speaker diarization
system,” in Proc. ICASSP, 2017, pp. 4945–4949.

[8] Ruiqing Yin, Hervé Bredin, and Claude Barras, “Neural speech
turn segmentation and affinity propagation for speaker diariza-
tion,” in Proc. Interspeech, 2018, pp. 1393–1397.

[9] Hagai Aronowitz and Weizhong Zhu, “Context and uncer-
tainty modeling for online speaker change detection,” in Proc.
ICASSP, 2020, pp. 8379–8383.

[10] Sam De Silva and Anthony Liu, “Europe’s tough new law on
biometrics,” Biometric Technology Today, vol. 2017, no. 2, pp.
5–7, 2017.

[11] Guanlong Zhao, Quan Wang, et al., “Augmenting transformer-
transducer based speaker change detection with token-level
training loss,” in Proc. ICASSP, 2023.

[12] Jian Wu, Zhuo Chen, et al., “Speaker change detection for
transformer transducer ASR,” in Proc. ICASSP, 2023.

[13] Rishi Bommasani, Drew A Hudson, et al., “On the op-
portunities and risks of foundation models,” arXiv preprint
arXiv:2108.07258, 2021.

[14] Leonardo Pepino, Pablo Riera, and Luciana Ferrer, “Emotion
recognition from speech using wav2vec 2.0 embeddings,” in
Proc. Interspeech, 2021, pp. 3400–3404.

[15] Hexin Liu, Leibny Paola Garcia Perera, et al., “Efficient self-
supervised learning representations for spoken language iden-
tification,” IEEE Journal of Selected Topics in Signal Process-
ing, vol. 16, no. 6, pp. 1296–1307, 2022.

[16] Marie Kunešová and Zbyněk Zajı́c, “Multitask detection of
speaker changes, overlapping speech and voice activity using
wav2vec 2.0,” in Proc. ICASSP, 2023.

[17] Xiaoshuo Xu, Yueteng Kang, et al., “Explore wav2vec 2.0 for
mispronunciation detection,” in Proc. Interspeech, 2021.

[18] Yu Zhang, Wei Han, et al., “Google USM: Scaling automatic
speech recognition beyond 100 languages,” arXiv preprint
arXiv:2303.01037, 2023.

[19] Anmol Gulati, James Qin, et al., “Conformer: Convolution-
augmented Transformer for Speech Recognition,” in Proc. In-
terspeech, 2020, pp. 5036–5040.

[20] Alex Graves, Santiago Fernández, et al., “Connectionist tem-
poral classification: labelling unsegmented sequence data with
recurrent neural networks,” in Proc. ICML, 2006, pp. 369–376.

[21] Daniel S. Park, William Chan, et al., “SpecAugment: A simple
data augmentation method for automatic speech recognition,”
in Proc. Interspeech, 2019, pp. 2613–2617.

[22] Alexei Baevski, Yuhao Zhou, et al., “wav2vec 2.0: A frame-
work for self-supervised learning of speech representations,”
Advances in Neural Information Processing Systems, vol. 33,
pp. 12449–12460, 2020.

[23] Alex Graves, “Sequence transduction with recurrent neural
networks,” arXiv:1211.3711, 2012.

[24] Chung-Cheng Chiu, James Qin, et al., “Self-supervised learn-
ing with random-projection quantizer for speech recognition,”
in Proc. ICML, 2022, pp. 3915–3924.

[25] “Google’s privacy principles,” https://googleblog.
blogspot.com/2010/01/googles-privacy-
principles.html, Accessed: 2023-09-13.

[26] “Artificial intelligence at Google: Our principles,” https://
ai.google/principles, Accessed: 2023-09-13.

[27] Zhiyun Lu, Yanwei Pan, et al., “Input length matters: Im-
proving RNN-T and MWER training for long-form telephony
speech recognition,” arXiv preprint arXiv:2110.03841, 2021.

[28] Jean Carletta et al., “The AMI meeting corpus: A pre-
announcement,” in Machine Learning for Multimodal Inter-
action, 2006, pp. 28–39.

[29] A Canavan, D Graff, and G Zipperlen, “CALLHOME Amer-
ican English speech LDC97S42,” LDC Catalog. Philadelphia:
Linguistic Data Consortium, 1997.

[30] Neville Ryant, Kenneth Church, et al., “First DIHARD chal-
lenge evaluation plan,” Tech. Rep., Linguistic Data Consor-
tium, University of Pennsylvania, 2018.

[31] Christopher Cieri, David Miller, and Kevin Walker, “The
Fisher corpus: A resource for the next generations of speech-
to-text.,” in LREC, 2004, vol. 4, pp. 69–71.

[32] “Kaldi ICSI data split,” https://github.com/kaldi-
asr/kaldi/blob/master/egs/icsi/README.txt,
Accessed: 2023-09-13.

[33] Noam Shazeer and Mitchell Stern, “Adafactor: Adaptive learn-
ing rates with sublinear memory cost,” in Proc. ICML, 2018,
pp. 4596–4604.

[34] Norman P Jouppi, Cliff Young, et al., “In-datacenter perfor-
mance analysis of a tensor processing unit,” in Proc. ISCA,
2017, pp. 1–12.

[35] Bo Li, Ruoming Pang, et al., “Massively multilingual ASR: A
lifelong learning solution,” in Proc. ICASSP, 2022, pp. 6397–
6401.

[36] Alec Radford, Jong Wook Kim, et al., “Robust speech recog-
nition via large-scale weak supervision,” in Proc. ICML, 2023,
pp. 28492–28518.

[37] “Cloud tensor processing units (TPUs),” https://cloud.
google.com/tpu, Accessed: 2023-09-13.

[38] Weiran Wang, Ding Zhao, et al., “Multi-output RNN-T joint
networks for multi-task learning of ASR and auxiliary tasks,”
in Proc. ICASSP, 2023.

https://googleblog.blogspot.com/2010/01/googles-privacy-principles.html
https://googleblog.blogspot.com/2010/01/googles-privacy-principles.html
https://googleblog.blogspot.com/2010/01/googles-privacy-principles.html
https://ai.google/principles
https://ai.google/principles
https://github.com/kaldi-asr/kaldi/blob/master/egs/icsi/README.txt
https://github.com/kaldi-asr/kaldi/blob/master/egs/icsi/README.txt
https://cloud.google.com/tpu
https://cloud.google.com/tpu

	 Introduction
	 Method
	 Backbone model
	 Pretraining
	 BEST-RQ pretraining
	 ASR pretraining

	 SCD fine-tuning
	 Speaker change token posterior scaling
	 SCD evaluation metrics

	 Experimental setup
	 Data
	 Training
	 Evaluation

	 Modeling details

	 Results
	 Overall system comparisons on YT-96-Eval
	 Effect of sub-components to fine-tune
	 Effect of the speaker change token posterior scaling
	 En-US quality analysis

	 Discussion and Conclusion
	 Acknowledgements
	 References

